
Leveraging Physics-Constrained Deep Learning to Accelerate Integrated Modeling of Toka-

mak Disruptions.

Research on mitigating damage from tokamak disruptions is limited by the inability of

experiments to access relevant plasma conditions expected in future devices. Additionally,

the multi-physics nature of disruptions makes first-principles modeling computationally pro-

hibitive for many-query analyses, which requires a self-consistent treatment of plasma power

balance, magnetohydrodynamic (MHD) activity, and runaway electron (RE) formation. To

this end, we present a novel path towards an efficient and high-fidelity integrated model of a

tokamak disruption. This approach leverages an adjoint treatment of the relativistic Fokker-

Planck equation [1] together with recent innovations in physics-constrained deep learning.

While incorporating a fully kinetic description of RE formation and evolution, the adjoint

formulation of the relativistic Fokker-Planck equation employed is tailored to only predict

quantities of interest needed to close the coupled MHD-RE system such as RE density or

current. It is shown that such an adjoint problem can be solved across a broad range of

plasma conditions using a Physics-Informed Neural Network (PINN) [2]. The resulting sur-

rogate allows for near instantaneous online predictions of RE density, while incorporating a

fully kinetic description of RE physics including essential physical processes such as partial

screening and radiation. As an initial application, the RE surrogate is coupled with a re-

duced yet fully self-consistent model of a tokamak disruption. This efficient integrated model

is used to explore the high-dimensional space of potential disruption mitigation strategies,

thus motivating a path towards accelerating disruption research.
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