The 2025 Sherwood Conference, Poster Session 1

Date: Monday, April 7, 2025 Time: 11:30 AM - 12:30 PM Location: Grand Ballroom

P1.01	Jeff Candy (General Atomics)	A New Paradigm for Global Gyrokinetic Turbulence
P1.02	Lanke Fu (PPPL)	Flexible differentiable stellarator coil proxy
P1.03	Alexey Knyazev (Columbia University)	Analysis of Shear Alfvén Wave-Induced Fast Ion Losses in Optimized Stellarators Using Reduced Vorticity
		Model
P1.04	Fatima Ebrahimi (Princeton	Extended MHD studies of ELM-free negative
	Plasma Physics Laboratory)	triangularity plasmas in DIII-D and the CETOP SciDAC-
		5 project
P1.05	Chris Hansen (Columbia	Machine learning for validation of high-fidelity
	University)	simulations of ELMs and optimization of ELM-free
D1 00		reactor design
P1.06	Seung-Hoe Ku (Princeton	Gyrokinetic study of neoclassical and turbulence
D1 07	Andropa Klainer (Princeton	Properties in the negative thangularity edge
F1.07	Plasma Physics Laboratory)	Resistive peeting-battooning modes in MASI/-O
P1 08	Frik Hansen (University of	Three Wave Turbulence in Incompressible Hall MHD
1 1.00	Texas at Austin)	
P1.09	Sergey Medvedev (Tokamak	Beta limits, pedestals and controllability in FPP
	Energy Ltd)	
P1.10	Bindesh Tripathi (University of	Generation of Large-Scale Magnetic Fields by Shear-
	Wisconsin-Madison)	Flow-Instability-Induced Zonal Flows
P1.11	Elizabeth Paul (Columbia	The shear Alfvén continuum of quasisymmetric
	University)	stellarators
P1.12	Patrick Grate (Princeton	Sites of Magnetic Reconnection in Nonaxisymmetric
	University)	Global Modes
P1.13	Katia Camacho Mata (Type One Energy)	Stellarator Optimization Program at Type One Energy
P1.14	Samuel Frank (Realta Fusion)	Realta Fusion's Axisymmetric Mirror Integrated
		Modeling Program
P1.15	Kun Huang (The University of	The marginally stable state of runaway electrons
_	Texas at Austin)	controlled by self-excited waves
P1.16	Alessandro Cardinali (CNR	Non-thermal Fusion Burning Processes in Highly
	Istituto Sistemi Complessi)	Confined Plasmas
P1.1/	Evdokiya Kostadinova (Auburn	Studying Nonlinear Electron Diffusion in Magnetized
D1 10	Driiversity)	Prasma Using Linear Operators in Hilbert Space
P1.18	Den Znu (Lawrence Livermore	bilurcation and hysteresis in global and local edge
1	INALIUHAL LADUIALULY)	ן נערטענפווטפ אוווענמנוטווא

P1.19	Jessica Eskew (Auburn	Energetic Electron Diffusion During Magnetic Island
	University)	Bifurcation in DIII-D
P1.20	Samuel Freiberger (Columbia	Application of system identification methods to
	University)	nonlinear MHD simulations of magneto-curvature and
		magnetorotational instabilities
P1.21	David Arnold (Columbia	Simulations of sawtoothing activity with a resistive wall
	University)	in the HBT-EP tokamak
P1.22	Klissman Franco (University of	Computations of Macroscale Dynamics in the Ultra-
	Wisconsin-Madison)	low Safety Factor regime
P1.23	Stuart Benjamin	Macroscopic trends of neoclassical tearing stability in
	(Massachusetts Institute of	high-field H-mode tokamak pilot plants
	Technology)	
P1.24	Leonhard Leppin (The	Towards pedestal profile predictions with quantified
	University of Texas at Austin)	uncertainty
P1.25	Sanket Patil (University of	Extended MHD modeling of stellarators using
	Wisconsin-Madison)	NIMSTELL*
P1.26	Dylan Brennan (Brennan	Calculating the probability of locking to an error field
	Fusion Research)	for a saturated magnetic island surrounded by a
		resistive wall
P1.27	Yashika Ghai (Oak Ridge	Modelling Runaway electrons-Whistler wave
	National Laboratory)	interactions using KORC-AORSA model
P1.28	Rahul Gaur (Princeton	Some trends in omnigenity
	University)	
P1.29	Christopher McDevitt	Predictive Modeling of Energetic Particles Using
	(University of Florida)	Physics-Informed Neural Networks
P1.30	(University of Florida) Omar Lopez (Oak Ridge	Physics-Informed Neural Networks Ensuring accurate runaway electron current deposition
P1.30	(University of Florida) Omar Lopez (Oak Ridge National Laboratory)	Physics-Informed Neural Networks Ensuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averaging
P1.30 P1.31	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT)	Physics-Informed Neural Networks Ensuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averaging A Golden Oldie: An MHD Topping Cycle for a Nuclear
P1.30 P1.31	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT)	Physics-Informed Neural Networks Ensuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averaging A Golden Oldie: An MHD Topping Cycle for a Nuclear Power Plant
P1.30 P1.31 P1.32	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in
P1.30 P1.31 P1.32	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin)	 Physics-Informed Neural Networks Ensuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averaging A Golden Oldie: An MHD Topping Cycle for a Nuclear Power Plant Stochastic Lagrangian Formulations of Transport in Coherent Structure Dominated Turbulence
P1.30 P1.31 P1.32 P1.33	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying
P1.30 P1.31 P1.32 P1.33	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas)	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global
P1.30 P1.31 P1.32 P1.33	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas)	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global Simulations
P1.30 P1.31 P1.32 P1.33 P1.34	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic
P1.30 P1.31 P1.32 P1.33 P1.34	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University)	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic Particle Integrability
P1.30 P1.31 P1.32 P1.33 P1.34 P1.35	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic Particle IntegrabilityShear Alfvén continuum and gaps in stellarator
P1.30 P1.31 P1.32 P1.33 P1.34 P1.35	 (University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) 	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic Particle IntegrabilityShear Alfvén continuum and gaps in stellarator equilibria
P1.30 P1.31 P1.32 P1.33 P1.34 P1.35 P1.36	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) Amelia Chambliss (Columbia	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic Particle IntegrabilityShear Alfvén continuum and gaps in stellarator equilibriaQuadratic flux-minimizing maps for characterization of
P1.30 P1.31 P1.32 P1.33 P1.34 P1.35 P1.36	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) Amelia Chambliss (Columbia University)	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic Particle IntegrabilityShear Alfvén continuum and gaps in stellarator equilibriaQuadratic flux-minimizing maps for characterization of energetic particle transport mechanisms in
P1.30 P1.31 P1.32 P1.33 P1.34 P1.35 P1.36	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) Amelia Chambliss (Columbia University)	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic Particle IntegrabilityShear Alfvén continuum and gaps in stellarator equilibriaQuadratic flux-minimizing maps for characterization of energetic particle transport mechanisms in quasihelical and quasiaxisymmetric stellarators
P1.30 P1.31 P1.32 P1.33 P1.34 P1.35 P1.36 P1.37	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) Amelia Chambliss (Columbia University)	 Physics-Informed Neural Networks Ensuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averaging A Golden Oldie: An MHD Topping Cycle for a Nuclear Power Plant Stochastic Lagrangian Formulations of Transport in Coherent Structure Dominated Turbulence Gyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global Simulations Weighted Birkhoff Averaging for Measuring Energetic Particle Integrability Shear Alfvén continuum and gaps in stellarator equilibria Quadratic flux-minimizing maps for characterization of energetic particle transport mechanisms in quasihelical and quasiaxisymmetric stellarators Investigating the Poloidal Structure of Impurity Density
P1.30 P1.31 P1.32 P1.33 P1.34 P1.35 P1.36 P1.37	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) Amelia Chambliss (Columbia University) HYOJONG LEE (Hanyang University)	 Physics-Informed Neural Networks Ensuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averaging A Golden Oldie: An MHD Topping Cycle for a Nuclear Power Plant Stochastic Lagrangian Formulations of Transport in Coherent Structure Dominated Turbulence Gyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global Simulations Weighted Birkhoff Averaging for Measuring Energetic Particle Integrability Shear Alfvén continuum and gaps in stellarator equilibria Quadratic flux-minimizing maps for characterization of energetic particle transport mechanisms in quasihelical and quasiaxisymmetric stellarators Investigating the Poloidal Structure of Impurity Density in Tokamak Plasmas using a 2D Fluid Transport Model
 P1.30 P1.31 P1.32 P1.33 P1.34 P1.35 P1.36 P1.37 P1.38 	(University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) Amelia Chambliss (Columbia University) HYOJONG LEE (Hanyang University) Elena Belova (PPPL)	Physics-Informed Neural NetworksEnsuring accurate runaway electron current deposition in the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a Nuclear Power PlantStochastic Lagrangian Formulations of Transport in Coherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in Varying Parameter Regimes Using Local and Global SimulationsWeighted Birkhoff Averaging for Measuring Energetic Particle IntegrabilityShear Alfvén continuum and gaps in stellarator equilibriaQuadratic flux-minimizing maps for characterization of energetic particle transport mechanisms in quasihelical and quasiaxisymmetric stellaratorsInvestigating the Poloidal Structure of Impurity Density in Tokamak Plasmas using a 2D Fluid Transport Model Nonlinear simulations of TAEs in NSTX-U
 P1.30 P1.31 P1.32 P1.33 P1.34 P1.35 P1.36 P1.37 P1.38 P1.39 	 (University of Florida) Omar Lopez (Oak Ridge National Laboratory) Jeffrey Freidberg (MIT) Norman Cao (University of Texas at Austin) Myriam Hamed (The university of Texas) Alexandra Lachmann (Columbia University) Hyder Abdullah (Columbia University) Amelia Chambliss (Columbia University) HYOJONG LEE (Hanyang University) Elena Belova (PPPL) Mohammed Haque (Columbia 	Physics-Informed Neural NetworksEnsuring accurate runaway electron current depositionin the post-disruption plateau via orbit-averagingA Golden Oldie: An MHD Topping Cycle for a NuclearPower PlantStochastic Lagrangian Formulations of Transport inCoherent Structure Dominated TurbulenceGyrokinetic Analysis of Microtearing Modes in VaryingParameter Regimes Using Local and GlobalSimulationsWeighted Birkhoff Averaging for Measuring EnergeticParticle IntegrabilityShear Alfvén continuum and gaps in stellaratorequilibriaQuadratic flux-minimizing maps for characterization ofenergetic particle transport mechanisms inquasihelical and quasiaxisymmetric stellaratorsInvestigating the Poloidal Structure of Impurity Densityin Tokamak Plasmas using a 2D Fluid Transport ModelNonlinear simulations of TAEs in NSTX-UOptimization for Quasi-Poloidal Symmetry

P1.40	Antoine Baillod (Columbia	Enhancing Stellarator Accessibility through Port Size
	University)	Optimization
P1.41	Alexander Haywood	Non-ideal stability analysis of differentially rotating
	(Princeton University)	disks with global curvature effects
P1.42	Timothy Stoltzfus-Dueck	Role of a strong azimuthal magnetic field in
	(PPPL)	centrifugal-mirror confinement
P1.43	Richard Nies (Princeton	Theory of extended modes at low magnetic shear
	University / PPPL)	
P1.44	Silvia Trinczek (Princeton	Neoclassical transport in the plateau regime in
	Plasma Physics Laboratory)	tokamak pedestals
P1.45	Thomas Foster (Princeton	Alpha-particle orbits near rational flux surfaces in
	University)	stellarators
P1.46	Alexandre Sainterme	Flow-driven, non-axisymmetric Hall-MHD instabilities
	(Princeton University)	
P1.47	Euichan Jung (Princeton	Orbit Confinement and Neoclassical Transport in the
	Plasma Physics Laboratory)	Collisionless Scrape-Off Layer of Tokamaks
P1.48	Jungpyo Lee (Hanyang	Impact of transport ordering breakdown on impurity
	University)	transport and bootstrap currents in a tokamak
P1.49	Neeraj Kumar (General Fusion	Gyrokinetic Simulations of High Collisionality PI3
	Inc.)	Spherical Tokamak Plasmas
P1.50	Hongxuan Zhu (Princeton	Global eigenmode structure of linear drift-wave
	University)	instabilities on flux surfaces in stellarators
P1.51	Runlai Xu (Princeton	Role of Magnetic Shear in ITG-Turbulent Tokamaks and
	University)	Quasi-Axisymmetric Stellarators: A Comparative Study
P1.52	Zheng Yang Tan (University of	Gyrokinetic study of the interchange instability
	Maryland College Park)	
P1.53	Edward Tocco (University of	Transport model for a rotating magnetic mirror
	Maryland)	
P1.54	Matt Landreman (University of	How does ion temperature gradient turbulence depend
	Maryland)	on magnetic geometry? Insights from data and
		machine learning