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Abstract

Gkeyll, a full-F continuum gyrokinetic code, is being developed to
study turbulence in the edge region of fusion devices. The edge
region involves large-amplitude fluctuations, electromagnetic
effects, and plasma interactions with material walls, making it
more computationally challenging than the core region. Gkeyll
models the turbulence by solving the 5-D full-F gyrokinetic system
in Hamiltonian form using an energy conserving high-order
discontinuous Galerkin scheme. The code has been extended to
include self-consistent electromagnetic perturbations using a
symplectic (v‖) formulation. We present some linear benchmarks
that illustrate the success of the electromagnetic scheme and the
avoidance of the Ampere cancellation problem. We also present
nonlinear electromagnetic turbulence simulations in a model SOL
geometry with sheath boundary conditions on open field lines.
The effects of electromagnetic fluctuations on the turbulence are
discussed.
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Status of gyrokinetics in Gkeyll

• Pioneering work by Eric Shi1 led to 5D electrostatic full-F GK
simulations of LAPD and NSTX-like helical SOL with sheath BCs

• Discontinuous Galerkin (DG) discretization scheme
◦ high order method, local and parallelizable
◦ conserves energy for Hamiltonian systems (like GK)

• We have been developing a new version of Gkeyll
◦ Moving from nodal to modal DG representation → orthonormal basis

functions, quadrature-free, computer algebra-generated solver kernels
(much easier to generalize to higher dimensionality/polynomial order),
O(10) faster

◦ Much simpler user interface, details abstracted away

• Have reproduced many of Shi’s results with new version of Gkeyll

• New nonlinear SOL simulations with electromagnetics

1See 2017 thesis; JPP 2017 paper on LAPD; and PoP 2019 paper on Helical SOL
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What about electromagnetics?

• Electromagnetic effects are especially important in the edge and
SOL, where steep gradients can push the plasma close to the
ideal-MHD stability threshold and produce stronger turbulence

• Including electromagnetic fluctuations has proved challenging in
some PIC codes, in part due to the well-known Ampère
cancellation problem

• Continuum gyrokinetic codes for core turbulence have avoided the
Ampère cancellation issue

• As Gkeyll uses a continuum formulation, we expect that we can
handle electromagnetic effects in the edge and SOL in a stable and
efficient manner
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Hamiltonian (p‖) vs. Symplectic (v‖) formulation of EMGK

In the Hamiltonian gyrokinetic formalism (see e.g. Brizard & Hahm, 2007),
there are two formulations for including electromagnetic fluctuations:

• Hamiltonian formulation: p‖ = mv‖ + qA‖

∂f

∂t
= {H, f }

H =
1

2m
p2
‖ + µB + qφ =

1

2m
(mv‖ + qA‖)

2 + µB + qφ B∗ = B0 +
1

q
p‖∇× b̂

• Symplectic formulation: p‖ = mv‖

∂f

∂t
= {H, f }+

q

m

∂f

∂v‖

∂A‖
∂t

H =
1

2
mv 2
‖ + µB + qφ B∗ = B0 +

m

q
v‖∇× b̂ + δB⊥

Poisson bracket:

{F ,G} =
B∗

B∗‖
·
(
∇F ∂G

∂p‖
− ∂F

∂p‖
∇G

)
− b̂

qB∗‖
×∇F · ∇G

4 / 22 Electromagnetic GK simulations in SOL N. Mandell



Hamiltonian (p‖) vs. Symplectic (v‖) formulation of EMGK

In Gkeyll’s DG scheme, the distribution function and other fields can
be discontinuous across cell boundaries, but energy is conserved
only if the Hamiltonian is continuous
• Hamiltonian (p‖) ⇒ both φ & A‖ must be continuous

• Symplectic (v‖) ⇒ φ must be continuous, but A‖ (and
∂A‖
∂t

) can be
discontinuous in parallel direction

Ex) MHD limit, system wants E‖ = 0⇒ ∂φ
∂z = −∂A‖

∂t

Piecewise linear φ ⇒ piecewise constant ∂φ
∂z
⇒ piecewise constant

∂A‖
∂t
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Ampère cancellation problem: Hamiltonian formulation

In Hamiltonian formulation, Ampère’s law becomes(
−∇2

⊥ + Cn

∑
s

µ0q

m

∫
d3p f

)
A‖ = Cj µ0

∑
s

q

m2

∫
d3p p‖f

The“cancellation problem” arises when there are small errors in the calculation of
the integrals. These errors are represented by Cn and Cj (which should both be
exactly 1 in the exact system).

The simplest Alfvén wave dispersion relation (slab geometry, uniform Maxwellian
background with stationary ions) becomes (with β̂ ≡ βe

2
mi
me

)

ω2 =
k2
‖v

2
A

Cn + k2
⊥ρ

2
s/β̂

[
1 + (Cn − Cj)

β̂

k2
⊥ρ

2
s

]
This reduces to the correct result if integrals calculated consistently, so that
Cn = Cj , but if not there will be large errors for modes with β̂/k2

⊥ρ
2
s � 1.
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Ampère cancellation problem: symplectic formulation

In symplectic formulation, Ampère’s law is

−∇2
⊥A‖ = µ0

∑
s

q

∫
d3v v‖f

However, we need a way to handle the
∂A‖
∂t

term that appears in the GK equation.
One way is to take ∂

∂t
of Ampère’s law, which gives an Ohm’s law:

−∇2
⊥
∂A‖
∂t

= µ0

∑
s

q

∫
d3v v‖

∂f

∂t
= µ0

∑
s

q

∫
d3v v‖

[
{H, f }+

q

m

∂f

∂v‖

∂A‖
∂t

]

⇒

(
−∇2

⊥ + Cn

∑
s

µ0q
2

m

∫
d3v f

)
∂A‖
∂t

= Cj µ0

∑
s

q

∫
d3v v‖{H, f }

Same dispersion relation, but integrals over v‖, not p‖. These can easily be
calculated consistently so that Cn = Cj and there is no cancellation problem.
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We choose symplectic formulation of EMGK

Electromagnetic GK equation:

∂f

∂t
= {H, f }+

q

m

∂f

∂v‖

∂A‖
∂t

+ C [f ] + S (1)

=
∂f

∂t

?

+
q

m

∂f

∂v‖

∂A‖
∂t

,

with H = 1
2
mv 2
‖ + µB + qφ, and ∂f

∂t

? ≡ {H, f }+ C [f ] + S
Quasineutrality equation (long-wavelength):

−∇ ·
∑
s

mn0

B2
∇⊥φ =

∑
s

q

∫
d3v f (2)

Ohm’s law: solve directly for ∂A‖/∂t(
−∇2

⊥ +
∑
s

µ0q
2

m

∫
d3v f

)
∂A‖
∂t

= µ0

∑
s

q

∫
d3v v‖

∂f

∂t

?

(3)

Parallel Ampère equation: only used for initial condition on A‖

−∇2
⊥A‖ = µ0

∑
s

q

∫
d3v v‖f (4)
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Explicit time-advance scheme

We use a multi-stage SSP-RK method. Can be built from multiple forward Euler steps.
Forward Euler scheme: Given f n and An

‖ at the beginning of timestep n,

1. Calculate φn:

−∇ ·
∑
s

mn0

B2
∇⊥φn =

∑
s

q

∫
d3v f n

2. Calculate partial GK RHS:(
∂f

∂t

?)n

= {Hn, f n}n + C [f n] + Sn

3. Calculate
(
∂A‖
∂t

)n
:(

−∇2
⊥ +

∑
s

µ0q2

m

∫
d3v f n

)(
∂A‖

∂t

)n

= µ0

∑
s

q

∫
d3v v‖

(
∂f

∂t

?)n

4. Advance f n+1 and An+1
‖ :

f n+1 = f n + ∆t

[(
∂f

∂t

?)n

+
q

m

∂f n

∂v‖

(
∂A‖

∂t

)n
]
, An+1

‖ = An
‖ + ∆t

(
∂A‖

∂t

)n
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Linear Benchmark: Kinetic Alfvén Waves

In slab geometry, with a uniform Maxwellian background and stationary ions, the
linearized GK equation reduces to

∂fe
∂t

+ v‖
∂fe
∂z

= v‖FMe

(
∂φ

∂z
+
∂A‖
∂t

)
.

Taking a single Fourier mode with perpendicular wavenumber k⊥ and parallel
wavenumber k‖, the field equations become

k2
⊥
min0

B2
φ = −e

∫
dv‖ fe

k2
⊥A‖ = −µ0e

∫
dv‖ v‖fe .

The KAW dispersion relation is then

ω2

[
1 +

ω√
2k‖vte

Z

(
ω√

2k‖vte

)]
=

k2
‖v

2
te

β̂

[
1 + k2

⊥ρ
2
s +

ω√
2k‖vte

Z

(
ω√

2k‖vte

)]
,

where β̂ = (βe/2)mi/me , and Z(x) is the usual plasma dispersion function.
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Linear Benchmark: Kinetic Alfvén Waves
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Linear Benchmark: Kinetic Alfvén Waves
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Linear Benchmark: Kinetic Ballooning Mode Instability

In local limit, KBM dispersion relation given by solving

ω
[
τ + k2

⊥ + Γ0(b)− P0

]
φ =

[
τ(ω − ω∗e)− k‖P1

] ω
k‖

A‖

2k2
‖k

2
⊥

βi
A‖ = k‖

[
k‖P1 − τ(ω − ω∗e)

]
φ

−
[
k2
‖P2 − τ (ω(ω − ω∗e − 2ωd(ω − ω∗e(1 + ηe)))

]
A‖

with

Pm =

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖
1
√

2π
e
−(v2

‖+v2
⊥)/2

(v‖)
m ω − ω∗i

[
1 + ηi (v

2/2− 3/2)
]

ω − k‖v‖ − ωd (v2
‖ + v2

⊥/2)
J2

0 (v⊥
√
b)
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Linear Benchmark: Kinetic Ballooning Mode Instability

k⊥ρi = 0.5, k‖Ln = 0.1, R/Ln = 5, R/LTi = 12.5, R/LTe = 10, τ = 1
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EM turbulence in NSTX-like helical SOL

• Simple helical model of tokamak SOL

◦ Like the green region, but straightened out to vertical
flux surfaces

◦ Field-aligned simulation domain that follows field lines
from bottom divertor plate, around the torus, to the
top divertor plate

◦ All bad curvature; brings in interchange instability drive

• Parameters taken from NSTX SOL measurements; Real
deuterium mass ratio, Lenard-Bernstein collisions

• Conducting sheath boundary conditions at the divertor plates

• Radially-localized source around x = 1.3 cm models flux of
particles and heat across separatrix from core

• See Shi et al., 2019 (PoP)
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Conducting-Sheath Boundary Conditions

Parallel Coordinate
φw

φsh

P
o
te
n
ti
a
l

∆φ = φsh − φw

Region Resolved in Simulation

ni = neni > ne

• Need to model effects of non-neutral sheath using BCs

• Get φsh(x,y) from solving GK Poisson equation, then use ∆φ = φsh − φw
to reflect low-v‖ electrons entering sheath

◦ Kinetic version of sheath BCs used in some fluid models (also similar
to some gyrofluid sheath BCs)

• Potential self-consistently relaxes to ambipolar-parallel-outflow state

• Allows local currents into and out of the wall

• No BC applied at sheath to ions (free outflow)
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Sheath-Model Boundary Conditions for Electrons
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Figure: Illustration of sheath-model boundary condition. (a) Outgoing
electrons with v‖ > vcut =

√
2e∆φ/m are lost into the wall, where

∆φ = φsh − φw , φsh is determined from the GK Poisson equation, and
φw = 0 for a grounded wall. (b) The rest of the outgoing particles
(0 < v‖ < vcut) are reflected back into the plasma.
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Source and parameters for NSTX-like helical SOL

Parameter Value
ρs0 2.9 mm
ρe 0.048 mm
Baxis 0.5 T
Bv/Bz 0.3
Lv 2.4 m
Lz 8 m
Lx 50ρs = 14.6 cm
Ly 100ρs = 29.1 cm
n0 7× 1018 m−3

Ti,src = Te,src 74 eV
Ti,sep 40 eV
Te,sep 25 eV
λee 0.96 m
λii 3.5 m

cs/
√
Rλp 1.9× 105 s−1

1.3 1.35 1.4
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Figure: Midplane particle source for helical-SOL
simulations in the perpendicular (x , y) plane.
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EM turbulence in NSTX-like helical SOL model
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EM turbulence in NSTX-like helical SOL model
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Summary & Future Work

• We have a new version of the Gkeyll code that is faster and
includes EM

• We have demonstrated that our formulation and scheme for
EMGK is effective and avoids the Ampère cancellation problem

• We have successfully completed some basic linear EMGK
benchmarks

• We have performed preliminary nonlinear full-F continuum
EMGK SOL simulations

• In-progress/Future Work:
◦ Detailed comparison of ES and EM GK simulations in helical SOL

geometry
◦ Generalize the geometry to better model NSTX SOL, and also to

include closed field line regions
◦ Include FLR effects (beyond the first order polarization drift)
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