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Turbulence, Zonal Flows, and the
Dimits Shift

• Ion temperature gradients can cause turbulence to develop in
toroidal plasmas, driving heat transport.

• The temperature gradient needed for instability can be
calculated using linear theory.

The Dimits shift is the nonlinear upshift of the crit-
ical temperature gradient that signals the onset of
turbulence.
• This is caused by a shearing away of turbulent streamers by

poloidal zonal flows (ZF) generated through a secondary
instability.

• This has been witnessed in both gyrofluid and gyrokinetic
simulations.

• If the linear drive is sufficiently large, the system undergoes a
tertiary instability, and turbulence ensues.

Questions and Motivation
• Why should the Dimits shift exist?
• What is the true nature of the tertiary

instability?
• Can the size of the shift be calculated?

In order to answer these questions, a simple model
is needed that captures the Dimits shift with a
minimal amount of physics.

The Modified Terry-Horton
Equation

The Terry-Horton equation is modified to include proper adi-
abatic electron response and is made to capture Rosenbluth-
Hinton states:

∂ζ

∂t
+ v · ∇ζ = β

∂φ

∂y
− α̂Dζ,

where v = (−∂yφ, ∂xφ), D is a damping operator and
ζ

.= (∇2
⊥ + iδ̂ − α̂)φ

is the generalized vorticity, where
∇2

⊥φ → ion polarization,

iδ̂φ → non-adiabatic electron response,

α̂φ → adiabatic electron response.

The modification is done by introducing the operator

α̂φ
.= φ − ⟨φ⟩ .= φ − 1

Ly

∫ Ly

0
dy φ,

which is zero when acting on zonal modes and unity otherwise.
The modified Terry Horton equation has the linear growth rates
λk = γk − iωk given by

γk = −Dk + βkyδ̂k

(1 + k2
⊥)2 + δ̂2

k

, ωk = βky(1 + k2
⊥)

(1 + k2
⊥)2 + δ̂2

k

.

This system contains destabilizing electron effects through iδ̂φ
and can be made to model ion Landau damping as well.
Parameters used are δ̂k = 1.5ky, D = 1 − 0.01∇2

⊥.

Previous Results

0

1

2

3

4

5

6

7

8

4 4.5 5 5.5 6 6.5 7 7.5

βlin β∗

ZF

Γ
n

β

Γ
NL
n

Γ
QL
n

Figure 1: Radial particle flux Γn for the nonlinear and quasilin-
ear systems as a function of β. The dashed-dotted line denotes
the linear threshold for instability βlin, while the dashed line
denotes the calculated upshifted critical gradient, β∗

ZF.

Heuristic Calculation of the Dimits Shift
The Dimits shift can be estimated by calculating the range of
the interaction (q∗

x) and the stability condition for the collection
of nonlocally coupled modes (phase-space expansion):

∂γ(0, py)
∂py

∣∣∣∣∣
py=p∗

y

= 0, Fastest Growing Mode,

∫ q∗
x

0
dkx γ(kx, p∗

y) = 0,
Phase-Space Expansion/

Stability,{
Θ = 0
Ω = 0

}
, Interaction Range in k space.

These equations are solved for β∗
ZF, the value of the upshifted

critical gradient.
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Figure 2: Parameter scan of the nonlinear system. The purple
line marks the linear stability threshold, while the green line
denotes the predicted end of the Dimits shift β∗ rom the analytic
model.

For a different approach based on wave kinetics, see
Hongxuan Zhu’s poster in tomorrow’s session.

Would a Simpler Model Suffice?

The (modified) Terry-Horton equation includes the E × B non-
linearity {φ, iδ̂φ} due to non-adiabatic electron response.
Neglecting this term leads to solutions that do not saturate
beyond the Dimits shift!
Instead, monopolar and dipolar vortices (modons) form that,
rather than getting sheared away, grow without bound.

Equation for Zonal flow velocity U with iδ̂ = δ0∂y:

∂U

∂t
= − ∂

∂x
⟨vxvy⟩︸ ︷︷ ︸

Reynolds stress

+ δ0

(
⟨v2

x⟩ − 1
Lx

∫ Lx

0
dx ⟨v2

x⟩
)

︸ ︷︷ ︸
Terry-Horton stress

100

101

102

103

104

105

15 20 25 30 35 40 45 50 55 60

β = 10

a)

b), c)

d)

t(cs/a)

zonal energy, {ϕ, iδ̂ϕ} = 0

zonal energy, {ϕ, iδ̂ϕ} 6= 0

DW energy, {ϕ, iδ̂ϕ} = 0

DW energy, {ϕ, iδ̂ϕ} 6= 0

t(cs/a)

5000

10000

15000

20000

25000

30000

25 25.2 25.4 25.6 25.8 26

b) c)

Figure 3: Evolution of the drift-wave and zonal energies for a
simulation beyond the Dimits shift without {φ, iδ̂φ} (solid line),
along with a restarted simulation with {φ, iδ̂φ} reinstated (dot-
ted line).

Spectral Transfer

The equation of motion in Fourier space is

∂φk

∂t
− Lφk = 1

2Γk

∑
k1,k2

δk,k1+k2ẑ · k1 × k2 φk1φk2(Γk2 − Γk1),

where Γk
.= α̂k − iδ̂k + k2 and L is the linear operator. Multi-

plying by φ∗
k leads to the spectral transfer function

T (k | p) .= 1
4
Re
(

ẑ · p × k φpφk−pφ∗
k

Γk−p − Γp

Γk

)
,

which denotes the spectral transfer from k to p through the
mode with wavenumber k − p.

−1

0

1

−1

0

1

−1

0

1

−1 0 1 −1 0 1

−1

0

1

p
y
ρ
s

−1

0

1

−0.03 0 0.03

β = 5.5

k
x
ρ
s

−1

0

1

−0.03 0 0.03

β = 5.5

p
y
ρ
s

pxρs

−1

0

1

−1 0 1

β = 7

×3

k
x
ρ
s

(px − kx)ρs
−1 0 1

−1

0

1

β = 7

×3

Figure 4: Time-averaged T (k |p) for kyρs = 1.1 with (left) kx =
0 and varied px, py; and (right) py = ky and varied kx, px.
Left (right) vertical colorbars in second column are px-averaged
transfer for px < kx (px > kx). Top (bottom) row denotes
system in (beyond) the Dimits shift regime.

CONCLUSIONS
• The modified Terry-Horton equation is the

simplest system that exhibits a complete Dimits
shift encountered thus far.

• The modified Hasegawa-Mima equation supports
monopolar and dipolar vortices, while the
modified Terry-Horton system shears them away.

• The spectral transfer function highlights the
importance of coherency for zonal interactions
during the Dimits shift.
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Figure 5: Pseudocolor of the modified vorticity scales by its RMS value (ζ/ζrms) on a symmetric logarithmic plot. (Minor ticks around 0 denote linear region of scale.) Frame labels a–d denote times
in figure 3. Vortices appear to dominate in the {φ, iδ̂φ} = 0 simulation, whereas the Terry-Horton stress destroys them, leading to an overall decrease in energy.
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