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Turbulence, Zonal Flows, and the
Dimits Shift

• Ion temperature gradients can cause turbulence to develop in
toroidal plasmas, driving heat diffusion.

• The critical temperature gradient needed for turbulence to
develop can be calculated using linear theory.

The Dimits shift is the nonlinear upshift of the crit-
ical temperature gradient that signals the onset of
turbulence.
• This is caused by a shearing away of turbulent streamers by

poloidal zonal flows (ZF) generated through a secondary
instability.

• This has been witnessed in both gyrofluid and gyrokinetic
simulations.

• If the linear drive is sufficiently large, the system undergoes a
tertiary instability.

Questions and Motivation
Even though the existence of the shift has been known for two
decades, two fundamental questions still go unanswered:
• Why should the Dimits shift exist?

• Some energy transfer mechanism must dominate over the
usual forward cascade.

• What is the true nature of the tertiary
instability?
• Is it actually related to the Kelvin-Helmholtz instability?

Do zonal flows really go “unstable"?

In order to answer these questions, a simple model
is needed that captures the Dimits shift with a
minimal amount of physics.

The Modified Terry-Horton
Equation

The Terry-Horton equation is modified to include proper adi-
abatic electron response and is made to capture Rosenbluth-
Hinton states:

∂ζ

∂t
+ v · ∇ζ = β

∂φ

∂y
− α̂Dζ,

where v = (−∂yφ, ∂xφ), D is a damping operator and
ζ̂ = −(k2

⊥ − iδ̂k + α̂k)φ̂
in Fourier space.
The modification is done by the introduction of the operator

α̂φ
.= φ − ⟨φ⟩ .= φ − 1

Ly

∫ Ly

0
dy φ,

which is zero when acting on zonal modes and unity otherwise.
The modified Terry Horton equation has the linear growth rates
λk = γk − iωk given by

γk = −Dk + βkyδ̂k

(1 + k2
⊥)2 + δ̂2

k

, ωk = βky(1 + k2
⊥)

(1 + k2
⊥)2 + δ̂2

k

.

This system contains destabilizing electron effects and can be
made to model ion Landau damping as well.

Simplified Models

Two simplifications are considered which exhibit the Dimits
shift:
Quasilinear System:
• Fields are decomposed into zonal-averaged and fluctuating

components (φ = ⟨φ⟩ + φ′).
• Eddy-eddy self-interactions are neglected.
• Model isolates the interaction between zonal flows and

drift-waves.
Four-Mode Truncation:
• Four Fourier modes plus c. c. are kept with the following

wavenumbers:
radial drift wave: p = (0, py),
pure zonal flow: q = (qx, 0),

sidebands: r± = (±qx, py).
• Allows one to investigate the behaviour of specific triad

interactions.

Direct Numerical Simulation
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Figure 1: Particle flux for the nonlinear and quasilinear systems
with D = 1 − 0.01∇2

⊥ and δ̂k = 1.5iky as a function of β.
The dashed-dotted line denotes the linear threshold for insta-
bility βlin, while the dashed line denotes the calculated upshifted
critical gradient, β∗

ZF.

Zonal Stability Analysis of the
4MT

Stability analysis of the 4MT with a background zonal mode φ0
results in the unstable eigenvalue

Re(λ+) = 1
2

[
γ+ +

√
1
2
(
Ω +

√
Ω2 + Θ2

)1/2
]
,

where γ± = γp ± γr, ω± = ωp ± ωr,

Ω .= γ2
− − ω2

− − 8|φ0|2(MRe
p MRe

r − M Im
p M Im

r ),
Θ .= 2ω−γ− + 8|φ0|2(MRe

p M Im
r + M Im

p MRe
r ).

In general, a valid end-state of the Dimits shift scenario should
be stable to drift-wave perturbations, though this can only con-
stitute an upper bound.

Maximally-Coupled Modes

The drift-wave and sideband modes become max-
imally coupled when the discriminant vanishes,
i.e.,

Ω = 0, Θ = 0.

A Maximally-Coupled Mode occur when two individual modes
a and b with eigenvalues λa and λb are nonlinearly coupled to
form two new modes a ± γb with eigenvalue (λa + λb)/2 for
some constant γ.
In order for these modes to be formed, the zonal-flow interaction
must be stabilizing, rendering Ω ≤ 0.
When dealing with many modes φk, one can consider the be-
havior of the phase-space.
Necessary condition for stability: Phase-space of φk’s
must be contracting (∑k γk < 0, see Terry & Horton 1982).

Nonlocality and α̂k

For zonal flows to be stabilizing, the condition MRe
p MRe

r >

M Im
p M Im

r must be satisfied. Consider Hasegawa-Mima (δ̂k = 0):

Incorrect Electron Response
q2

x ≲ p2
y ⇒ LOCAL

Correct Electron Response

q2
x ≲ 1 + p2

y ⇒ NONLOCAL

Thus, the α̂ operator enables nonlocal zonal interactions in
k space.

CENTRAL IDEA
The tertiary instability is not a Kelvin-Helmholtz
instability.

Rather, the Dimits shift ends when the collection
of modes within the interaction range of the pri-
mary drift-wave mode becomes unstable.

Estimation of the Dimits Shift

The Dimits shift can be estimated by calculating the range of
the interaction (q∗

x) and the stability condition for the collection
of nonlocally coupled modes (phase-space expansion):

∂γ(0, py)
∂py

∣∣∣∣∣
py=p∗

y

= 0, Fastest Growing Mode,

∫ q∗
x

0
dkx γ(kx, p∗

y) = 0,
Phase-Space Expansion/

Stability,{
Θ = 0
Ω = 0

}
, Interaction Range in k space.

These equations are solved for β∗
ZF, the value of the upshifted

critical gradient.

Theoretical Results

4

4.5

5

5.5

6

6.5

7

7.5

8

0.5 1 1.5 2 2.5 3

βlin

β∗

ZF

β

δ0

Zonal

Turbulent

Figure 2: Parameter scan of the nonlinear system with δ̂k =
iδ0ky and Dk = 1 + 0.01k2

⊥. The purple line marks the linear
stability threshold, while the green line denotes the predicted
end of the Dimits shift β∗ rom the analytic model.
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Figure 3: Parameter scan of the nonlinear system with δ̂k =
iδ0ky and Dk = 0.3|ky|. The purple line marks the linear sta-
bility threshold, while the green line denotes the predicted end
of the Dimits shift β∗ from the analytic model.

Physical Picture

Figure 4: Visualization of (a) forward zonal cascade usually
found in turbulence and (b) nonlocal zonal shearing that is cru-
cial in the Dimits shift regime. Typically, qx ≪ py. Red dashed
line denotes the interaction range in k space.

The Dimits Shift scenario is summarized as follows:

1 Small-amplitude drift-wave perturbations grow exponentially
in the initial linear regime.

2 These drift waves cause a Kelvin-Helmholtz-type secondary
instability, causing zonal flows to grow.

3 A spectrum of zonal flows is established, and flows begin to
shear drift waves.

4 This shearing is fast and nonlocal in k-space, transferring
energy quickly from unstable to stable drift waves.

5 The Dimits shift ends when the cluster of modes within the
interaction range of the primary drift-wave mode is no longer
stable.

CONCLUSIONS
• The α̂ operator renders the zonal interaction

nonlocal in k space.
• The tertiary instability is not a

Kelvin-Helmholtz instability.
• The Dimits shift roughly ends when the

collection of nonlocally coupled modes goes
unstable.

• This calculation results in a shift that agrees well
with direct numerical simulation.

• The quantitative size of the shift encompasses all
aspects of the underlying model, both linear and
nonlinear.
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