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Turbulence, Zonal Flows, and the
Dimits Shift

e Jon temperature gradients can cause turbulence to develop in
toroidal plasmas, driving heat diffusion.

e The critical temperature gradient needed for turbulence to
develop can be calculated using linear theory.

The Dimits shift is the nonlinear upshift of the crit-
ical temperature gradient that signals the onset of
turbulence.

e This is caused by a shearing away of turbulent streamers by
poloidal zonal flows (ZF) generated through a secondary
instability.

e This has been witnessed in both gyrofluid and gyrokinetic
simulations.

e If the linear drive is sufficiently large, the system undergoes a
tertiary instability.

Questions and Motivation

Even though the existence of the shift has been known for two
decades, two fundamental questions still go unanswered:

* Why should the Dimits shift exist?

e Some energy transfer mechanism must dominate over the
usual forward cascade.

e What is the true nature of the tertiary
instability?
e [s it actually related to the Kelvin-Helmholtz instability?
Do zonal flows really go “unstable'?

In order to answer these questions, a simple model

is needed that captures the Dimits shift with a
minimal amount of physics.

The Modified Terry-Horton
Equation

The Terry-Horton equation is modified to include proper adi-
abatic electron response and is made to capture Rosenbluth-
Hinton states:
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where v = (=0,p, 0,p), D is a dampmg operator and
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in Fourier space.

The modification is done by the introduction of the operator
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which is zero when acting on zonal modes and unity otherwise.
The modified Terry Horton equation has the linear growth rates
Ak = Vi — 1wy given by
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This system contains destabilizing electron effects and can be
made to model ion Landau damping as well.
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Simplified Models

Two simplifications are considered which exhibit the Dimits
shift:
Quasilinear System:

e Fields are decomposed into zonal-averaged and fluctuating
components (i = (@) + ¢').
e Eddy-eddy self-interactions are neglected.

e Model isolates the interaction between zonal flows and
drift-waves.

Four-Mode Truncation:

e Four Fourier modes plus c. c. are kept with the following
wavenumbers:

radial drift wave:  p = (0,p,),
pure zonal flow: q = (q.,0),
sidebands: Ty = (£q., py).

e Allows one to investigate the behaviour of specific triad
Interactions.

Direct Numerical Simulation
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Figure 1: Particle flux for the nonlinear and quasilinear systems
with D = 1 — 0.01V? and O = 1.51k, as a function of S.
The dashed-dotted line denotes the linear threshold for insta-
bility 3y, while the dashed line denotes the calculated upshitted
critical gradient, S87p.

Zonal Stability Analysis of the
AMT

Stability analysis of the 4MT with a background zonal mode
results in the unstable eigenvalue

Re(A,) = % Ty + \[ (Q+ VT @2)1/2]
where v+ = vp £ Vp, Wt = wWp L Wy,
Q=42 — S (MM — MEAL),
O = 2w_y_ + 8o (M M™ + M M),

In general, a valid end-state of the Dimits shift scenario should
be stable to drift-wave perturbations, though this can only con-
stitute an upper bound.

Maximally-Coupled Modes

The drift-wave and sideband modes become max-
imally coupled when the discriminant vanishes,

i.e.’

A Maximally-Coupled Mode occur when two individual modes
a and b with eigenvalues A\, and A; are nonlinearly coupled to
form two new modes a £ b with eigenvalue (A, + Ap)/2 for
some constant .

In order for these modes to be formed, the zonal-flow interaction
must be stabilizing, rendering €2 < 0.

When dealing with many modes g, one can consider the be-
havior of the phase-space.

Necessary condition for stability: Phase-space of g’s
must be contracting (> vk < 0, see Terry & Horton 1982).

Nonlocality and oy

For zonal flows to be stabilizing, the condition M, te rhe
M, m A st be satisfied. Consider Hasegawa—l\/hma (5k = O)

Incorrect Electron Response
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Thus, the o
k space.

operator enables nonlocal zonal interactions in

CENTRAL IDEA

The tertiary instability s not a Kelvin-Helmholtz
instability.

Rather, the Dimits shift ends when the collection
of modes within the interaction range of the pri-
mary drift-wave mode becomes unstable.

Estimation of the Dimits Shift

The Dimits shift can be estimated by calculating the range ot
the interaction (¢}) and the stability condition for the collection
of nonlocally coupled modes (phase-space expansion):
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These equations are solved for 87, the value of the upshifted
critical gradient.

= 0, Fastest Growing Mode,

Phase-Space Expansion/
Stability,

Interaction Range in £ space.

Theoretical Results
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Figure 2: Parameter scan of the nonlinear system with O =
0ok, and Dy = 1 + 0.0lki. The purple line marks the linear
stability threshold, while the green line denotes the predicted
end of the Dimits shift 5* rom the analytic model.

Physical Picture
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[Figure 4: Visualization of (a) forward zonal cascade usually
found in turbulence and (b) nonlocal zonal shearing that is cru-
cial in the Dimits shift regime. Typically, ¢, < p,. Red dashed
line denotes the interaction range in k£ space.

The Dimits Shift scenario is summarized as follows:

1 omall-amplitude drift-wave perturbations grow exponentially
in the initial linear regime.

2 These drift waves cause a Kelvin-Helmholtz-type secondary
instability, causing zonal flows to grow.

3 A spectrum of zonal flows is established, and flows begin to
shear drift waves.

4 'This shearing is fast and nonlocal in k-space, transferring
energy quickly from unstable to stable drift waves.

5 The Dimits shift ends when the cluster of modes within the

interaction range of the primary drift-wave mode is no longer
stable.
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Figure 3. Parameter scan of the nonlinear system with O =
i0pk, and Dy = 0.3|k,|. The purple line marks the linear sta-
bility threshold, while the green line denotes the predicted end
of the Dimits shift 5* from the analytic model.

CONCLUSIONS

e The & operator renders the zonal interaction
nonlocal in £ space.

e The tertiary instability s not a
Kelvin-Helmholtz instability.

e The Dimits shitt roughly ends when the
collection of nonlocally coupled modes goes
unstable.

e This calculation results in a shift that agrees well
with direct numerical simulation.

e The quantitative size of the shift encompasses all

aspects of the underlying model, both linear and

nonlinear.
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