Critical role of plasma heat flux on Bohm criterion

Xianzhu Tang and Zehua Guo

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

The competition between parallel and perpendicular transport sets the width of the scrape-off layer for plasma particle and energy exhaust. Transport along the magnetic field is dominated by parallel streaming, which is a fast process constrained by ambipolarity. This becomes most transparent at the divertor surface, where the non-neutral sheath regulates the exhaust flux in terms of the boundary plasma density, temperature, and flow. The exit flow speed is constrained by the Bohm criterion to a local sound speed, which is set by the plasma temperature. For a warm ion plasma, the highest local parallel sound speed in the literature for Bohm criterion analysis is $c_{s\parallel} \equiv \sqrt{k_B \left(T_{e\parallel} + 3T_{i\parallel}\right)/m_i}$, with $T_{e\parallel}$ and $T_{i\parallel}$ the electron and ion parallel temperature.

Direct kinetic-Maxwell simulations [1] reveal that the plasma exit flow robustly exceeds $c_{s\parallel}$ at the sheath entrance, contradicting a foundational plasma theory prediction. Based on the extended CGL formulation [2], we have performed a new analysis that yields

$$u_{Bohm} \equiv \sqrt{\frac{3k_B \left(T_{i\parallel} + Z\beta T_{e\parallel}\right)}{m_i} - Z\beta \frac{m_e}{m_i} \frac{j^2}{\left(en_e\right)^2}} \tag{1}$$

where j is the net current density to the wall and Z the ion change number. The most important and interesting quantity is the heat flux factor β , which depends on the parallel heat flux [3]. With this new formulation, we are able to explain a wide range of plasma exit flow speeds as functions of plasma collisionality and current into the wall, and resolve a number of observed contradictions between simulations and traditional theory.

This work was supported by OFES.

[1] X.Z. Tang & Z. Guo, PoP **22**, 100703 (2015); [2] Z. Guo, X.Z. Tang, & C. McDevitt, PoP **21**, 102512 (2014); [3] X.Z. Tang & Z. Guo, Phys. Plasmas **23**, 120701 (2016);