Ignition and Burning Plasmas: a Multi Fluid Analysis

L. Guazzotto¹, R. Betti²

¹Physics Department, Auburn University, Auburn, AL, 36849 ²Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627

Motivation

- The next generation of magnetic confinement nuclear fusion experiments aims to achieve burning plasma conditions.
- A clear understanding of performance requirements needed to obtain burning or ignition conditions is desirable.
- Our knowledge to that purpose has not advanced much since Lawson's original work¹.
- We include additional physics in a zero- and one-dimensional analysis of the plasma to improve our estimate of plasma properties relevant to ignition and burning plasma conditions.

¹J. D. Lawson, Proc. Phys. Soc. London Sect. B 70, 6 (1957)

Outline

- Modified ignition criterion:
 - Include two-fluid and α -particle effects.
- Compute and compare \dot{T} vs. T curves for various models.
 - Determine the relevance two-fluid and α -particle effects on the minimum heating needed for ignition.
- Consider one-dimensional, two-parameter density and temperature profiles and evaluate their effect on ignition physics.
- Use the complete model to investigate physics of burning plasmas.

Steady-State t-Dependent One-D Burning-Plasma The Original Lawson Criterion Time-Independent Analysis: In Previous Episodes . . .

The Lawson criterion is derived starting from the single-fluid zero-dimensional energy balance:

$$\frac{E_{\alpha}}{16}p^{2} \frac{\langle \sigma v \rangle}{T^{2}} + S_{h} = \frac{C_{B}}{4} \frac{p^{2}}{T^{3/2}} + \frac{3}{2} \frac{p}{\tau_{E}} \left[+\frac{3}{2} \frac{dp}{dt} \right].$$
(1)

A straightforward manipulation gives the ignition criterion (with $S_h = 0$)

$$p au_{E} = 2nT au_{E} \geq rac{T^{2}}{rac{E_{lpha}}{24} < \sigma \upsilon > -rac{C_{B}}{6}T^{1/2}}.$$
 (2)

We now want to see how this is modified by multi-fluid effects.

The Starting Equations Are the Time-Dependent Three-Fluid Energy Conservation Equations.

The starting point is the system of zero-dimensional conservation equations for the three species, ions, electrons and α s:

$$\frac{3}{2}n\frac{\partial T_{i}}{\partial t} = S_{hi} - \frac{3}{2}\frac{p_{i}}{\tau_{Ei}} + \frac{3}{2}\frac{n(T_{e} - T_{i})}{\tau_{eq}}$$
(3)
$$\frac{3}{2}n\frac{\partial T_{e}}{\partial t} = S_{he} - \frac{3}{2}\frac{p_{e}}{\tau_{Ee}} + \frac{n_{\alpha}}{\tau_{\alpha}}E_{\alpha} - C_{B}\frac{p_{e}^{2}}{T_{e}^{3/2}} + \frac{3}{2}\frac{n(T_{i} - T_{e})}{\tau_{eq}}$$
(4)
$$\frac{\partial n_{\alpha}}{\partial t} = \frac{n^{2}}{4} < \sigma \upsilon > -\frac{n_{\alpha}}{\tau_{\alpha}} - \frac{n_{\alpha}}{\tau_{E\alpha}}.$$
(5)

Heating terms (S_{hi}, S_{he}) are important in:

- Transients;
- Burning-Plasma analysis.

Steady-State t-Dependent One-D Burning-Plasma

The System Simplifies for Steady-State.

Steady-State t-Dependent One-D Burning-Plasma

We first write a 0D ignition criterion, focusing on the time-independent energy balance:

$$S_{hi} - \frac{3}{2} \frac{p_i}{\tau_{Ei}} + \frac{3}{2} \frac{n(T_e - T_i)}{\tau_{eq}} = 0$$

$$S_{he} - \frac{3}{2} \frac{p_e}{\tau_{Ee}} + \frac{n_\alpha}{\tau_\alpha} E_\alpha - C_B \frac{p_e^2}{T_e^{3/2}} + \frac{3}{2} \frac{n(T_i - T_e)}{\tau_{eq}} = 0$$

$$\frac{n^2}{4} < \sigma v > -\frac{n_\alpha}{\tau_\alpha} - \frac{n_\alpha}{\tau_{E\alpha}} = 0.$$
(8)

Note that for $\tau_{E\alpha} \rightarrow \infty$ (perfectly confined α s) alpha particles drop out of the system.

An Ideal Multi-Fluid Ignition Criterion Is Written.

The New Lawson Criterion

- For convenience we assume $\tau_{Ei} = k_1 \hat{\tau}_E$, $\tau_{Ee} = k_2 \hat{\tau}_E$.
- We have used the definition: $\hat{\tau}_E = 2 \frac{\tau_{Ei} \tau_{Ee}}{\tau_{Ei} + \tau_{Ee}}$
- If Bremsstrahlung is neglected, a simple expression is obtained:

$$nT_{i}\hat{\tau}_{E} \geq \frac{6T_{i}^{2}}{E_{\alpha} < \sigma \upsilon > \frac{\tau_{E\alpha} + \tau_{\alpha}}{\tau_{E\alpha}}} \left[1 + \sqrt{1 + \frac{1}{6} \frac{n < \sigma \upsilon > E_{\alpha}}{T_{i}} \frac{\tau_{E\alpha} \tau_{eq}}{k_{1}k_{2}(\tau_{E\alpha} + \tau_{\alpha})}} \right].$$
(9)

- The right-hand side weakly depends on *n* through τ_{eq} and τ_{α} .
- As for the single-fluid case, this expression will have a minimum, which depends on the choice of parameters (τ_{Ej}).

Steady-State

Steady-State The New Lawson Criterion, Parameter Dependence

The Multi-Fluid Ignition Criterion Is Explored.

The SF Lawson criterion is recovered assuming

- $0 \tau_{eq} \rightarrow 0$ and
- 2) $\tau_{E\alpha} \rightarrow \infty$ (in this case τ_{α} drops out, but will still matter for heating).

The green curve is obtained using $\tau_{E\alpha} \rightarrow \infty$, but finite $\tau_{e\alpha}$.

Defining $c_2 \equiv \tau_{Ee}/\tau_{Ei}$, $c_4 \equiv \tau_{E\alpha}/\tau_{Ei}$, the minimum of $p_{tot}\tau_{Ei}$ is approximated by:

$$p_{tot}\tau_{Ei} \simeq a_0 \left(1 + \frac{a_1}{c_2}\right) \left(1 + \frac{a_2}{c_4}\right) + \frac{a_3}{c_2c_4} + a_4\log(c_4).$$
(10)

Coefficients a_i are found numerically.

 $p_{tot} \tau_{Ei}$ for SF and MF, $c_2 = c_4 = 1$.

Coefficient	Value
a_0	50.0744
a_1	0.616194
a_2	0.0558493
a_3	-1.18581
a4	-2.92248

Time-Dependent Analysis: In Previous Episodes

- The standard approach considers a single fluid and the α power is immediately and entirely delivered to the plasma.
- Linear analysis is used to determine the stability of *T*:
 - ✓ Positive $\dot{T} \equiv dT/dt$ corresponds to an unstable temperature (temperature will grow if perturbed);
 - ✓ Negative *T* corresponds to a stable temperature (temperature will **not** grow if perturbed).
- \dot{T} is negative for small $T \rightarrow$ heating power is needed.

t-Dependent

In Previous Episodes . . . [Continued].

With no heating, *T* = 0 corresponds to ignition points (*α* power = losses).

t-Dependent

- To reach an ignition point from a cold plasma, heating power is needed.
- One may also want some heating power at high temperature for burn control.
- Turning power on and off only shifts the curve up and down.
- $\dot{T} = 0$ points move farther apart with heating on.

 \dot{T} vs. T with and without heating, single fluid model

t-Dependent

- The minimum heating power needed to take the plasma to ignition is found numerically.
- The ratios τ_{Ee}/τ_{Ei} and τ_{α}/τ_{Ei} are varied.
- Note that in most of our results we use:

$$\begin{aligned} \tau_{eq} &= \frac{1}{78 \times 10^{-20} n} \left(\frac{T_e + T_l}{2} \right)^{3/2}, \qquad (11) \\ \tau_{\alpha} &= 1.17 \times 10^{18} \frac{T_e^{3/2}}{n}. \end{aligned}$$

• Physical values of τ_{eq} , τ_{α} are $\simeq 1$ s when $T \simeq 20 \text{keV}$. $n \simeq 10^{20} \text{m}^{-3}$.

Heating Needed for Ignition Is Found Numerically

Steady-State t-Dependent One-D Burning-Plasma One-Dimensional Profiles, n and T One-Dimensional Parameters Are Introduced

• We introduce the density and temperature profiles:

$$\begin{split} n(r,t) &= n_0(t) \left(1 - r^{\theta} \right)^{\eta} \qquad T_{i,e}(r,t) = T_{0;i,e}(t) \left(1 - r^{\nu} \right)^{\mu}, \\ \text{with} \quad 0.1 \leq (\mu;\eta) \leq 2 \qquad \text{and} \quad 1.1 \leq (\nu;\theta) \leq 4. \end{split}$$

- Spatial profiles are fixed in time even during time-dependent simulations: We assume that profile equilibration is faster than transients (i.e., time evolution of n_0 etc.).
- Ion and electron temperature profiles are kept identical, but could in principle be different. Note that $T_{0;i} \neq T_{0;e}!$

Steady-State t-Dependent **One-D** Burning-Plasma **One-Dimensional Profiles**, n_{α} etc

One-Dimensional Problem Setup

• For n_{α} the "equilibrium" spatial profile is used, obtained from

$$\frac{\partial n_{\alpha}(r,t)}{\partial t} = \frac{n(r,t)^2}{4} < \sigma \upsilon > (r,t) - \frac{n_{\alpha}(r,t)}{\tau_{\alpha}(r,t)} - \frac{n_{\alpha}(r,t)}{\tau_{E\alpha}}$$
(13)

and normalized to 1 at r = 0.

- Keep in mind that $\langle \sigma v \rangle = \langle \sigma v \rangle (T_i(r,t,))$ and $\tau_{\alpha} = \tau_{\alpha} (n(r,t), T_e(r,t,))$.
- The ion-electron equilibration time τ_{eq} also depends on profiles, but energy confinement times τ_{Ei} , τ_{Ee} , $\tau_{E\alpha}$ are entered as constant values for each case.

One-Dimensional Problem Setup [2]

• The full set of equations:

$$\begin{aligned} \frac{3}{2}n(r,t)\frac{\partial T_{i}(r,t)}{\partial t} &= S_{hi} - \frac{3}{2}\frac{n(r,t)T_{i}(r,t)}{\tau_{Ei}} + \frac{3}{2}\frac{n(r,t)(T_{e}(r,t) - T_{i}(r,t))}{\tau_{eq}}, \quad (14) \\ \frac{3}{2}n(r,t)\frac{\partial T_{e}(r,t)}{\partial t} &= S_{he} - \frac{3}{2}\frac{n(r,t)T_{e}(r,t)}{\tau_{Ee}} + \frac{n_{\alpha}(r,t)}{\tau_{\alpha}}E_{\alpha} \\ &- C_{B}\frac{\left(n(r,t)T_{e}^{2}(r,t)\right)}{T_{e}^{3/2}(r,t)} + \frac{3}{2}\frac{n(r,t)(T_{i}(r,t) - T_{e}(r,t))}{\tau_{eq}}, \\ \frac{\partial n_{\alpha}(r,t)}{\partial t} &= \frac{n^{2}(r,t)}{4} < \sigma \upsilon > -\frac{n_{\alpha}(r,t)}{\tau_{\alpha}} - \frac{n_{\alpha}(r,t)}{\tau_{E\alpha}} \quad (16) \end{aligned}$$

is first integrated (i.e., averaged) in space at each time step, then advanced in time.

Note that n'_α(t) ≠ 0 since only the shape (and not the numerical value) of n_α is determined from Eq. (13).

e t-Dependent **One-D** Burning-Plasma

Reference T, n profiles

The importance of Profiles Is Studied

- The 1D profile definitions allow in principle for a 4D (η, θ, μ, ν) space to be explored for profile optimization (6D if one allows for different profiles for *T_i* and *T_e*).
- In practice, temperature profiles are determined by transport and are less amenable to external control than density profile.
- In most cases, we assign either $T_{i,e}(r) \equiv T_L(r)$ or $T_{i,e}(r) \equiv T_H(r)$ (L-or H-mode-like profiles).

Minimum $p_{tot} au_{Et}$ for Ignition Depends on Profiles.

Minimum $p_{tot} \tau_{Ei}$ for ignition, L-mode temperature profiles Minimum $p_{tot} \tau_{Ei}$ for ignition, H-mode temperature profiles

- Density profiles are varied keeping temperature profiles fixed.
- Average *n* is fixed for all runs.
- The energy confinement time needed for ignition depends on the density and temperature profiles.
- For reference, the SF and MF 0D values are $\simeq 59$ and 82 $[10^{20}m^{-3}~keV~s].$

-State t-Dependent One-D Burning-Plasma T for different parameters

\dot{T} Curves Are Obtained Also for the 1D Case.

- *T* curves strongly depend on parameters.
- Curves 1 and 2 are 0D (SF and MF).
- Curves 3 and 4 have H-mode *T* profile.
- Curves 5 and 6 have L-mode *T* profile.
- Curves 3 and 5 have $\theta = 2$, $\eta = 0.1$.
- Curves 4 and 6 have $\theta = 2$, $\eta = 2$.
- All curves are "at steady state": different curves would be found in a transient.

Analysis Is Extended to Burning Plasmas

One-D Burning-Plasma

• For future experiments, the burning plasma ($P_{\alpha} \ge S_h$, $Q \ge 5$) state is more relevant than ignition.

Burning-Plasma setup

- Formally, the only modification needed to extend our analysis is to have heating power on at all time.
- Experimental profiles (for e.g. ITER scenarios or DIII-D shots) are introduced as arbitrary expressions, fits or interpolations.
- Different spatial profiles are used for ion and electron temperatures.

Steady-State t-Dependent One-D Burning-Plasma A figure of merit: $p_{ro-\alpha}$ Experimental Performance Can Be Evaluated In Terms of $p_{no-\alpha}$.

• To fix ideas, start from he single fluid, 0D case:

$$\frac{3}{2}n\frac{\partial T}{\partial t} = \frac{E_{\alpha}}{16}p^2 \frac{\langle \sigma v \rangle}{T^2} + S_h - \frac{C_B}{4}\frac{p^2}{T^{3/2}} - \frac{3}{2}\frac{p}{\tau_E}.$$
 (17)

Solve

$$\dot{T} = 0$$
 and $\frac{\partial T}{\partial T} = 0$ (18)

for *T* and *one* of S_h , *n* and τ_E .

- Given the values, turn off the *α* heating and calculate *p* at steady state. This is *p*_{no-α}.
- A similar procedure can be performed numerically for the full MF, 1D case.

y-State t-Dependent One-D Burning-Plasma

Heating-dependent τ_F

Non-Constant Energy Confinement Time Is Considered.

• It is more realistic to consider

$$\tau_E = \tau_{E0} \frac{S_h}{S_h + P_\alpha}.$$
 (19)

- This may result in a *T* curve without minimum.
- On the right, ITER cases with $\tau_{Ej} = 2.7$ s (top), $\tau_{E0j} = 5.4$ s (bottom).
- For the "standard" case, $p_{no-\alpha} \simeq 6.4 \times 10^{20} [\mathrm{m}^{-3} \text{ keV}],$ $\simeq 65\% p|_{min(\dot{T})}$
- In both cases, S_h = 25MW for both ions and electrons.

L. Guazzotto and R. Bett

Steady-State t-Dependent One-D Burning-Plasma Q dependence on τ_F Model.

- The gain factor Q(t) is calculated numerically for the fixed and variable τ_E models.
- It can be expected that a larger *Q* will be obtained if the heating power is reduced once the burning-plasma state is reached.
- This is verified for the fixed τ_E case only.
- Heating power is reduced by 25% halfway through the simulation.

Conclusions

- Two-fluid and α effects on ignition have been analyzed.
- The energy confinement time needed for ignition depends on multi-fluid physics.
- The heating power needed for ignition also depends on multi-fluid physics.
- One-dimensional temperature and density profiles influence the ignition criterion.
- For burning plasmas, a $p_{no-\alpha}$ figure of merit is introduced and the effect of the heating power on τ_E is considered.

List of Symbols

n	plasma density	nα	α particle density
T _i	ion temperature	T _e	electron temperature
C_B	Bremsstrahlung coefficient	$<\sigma v>$	Fusion cross section
$\hat{\tau}_E$	"equivalent" energy confinement time	$\tau_{E\alpha}$	α energy confinement time
$k_1 \hat{\tau}_E$	ion energy confinement time	$k_2 \hat{t}_E$	electron energy confinement time
$\tau_{eq} = \tau_{eq}(T_i, T_e)$	T_i/T_e equilibration time	$\tau_{\alpha} = \tau_{\alpha}(T_e)$	α/T_e equilibration time

References

- J. D. Lawson, Proc. Phys. Soc. London Sect. B 70, 6 (1957)
- J. P. Freidberg, Plasma Physics and Fusion Energy, Cambridge Uni- versity Press, Cambridge UK, 2007
- http://www.auburn.edu/cosam/faculty/physics/
 guazzotto/research/TF_Lawson_main.html (google
 "Guazzotto Lawson")
- L. Guazzotto and R. Betti, Tokamak Two-Fluid Ignition Conditions, *submitted to* Phys. Plasmas

