Fast and spectrally accurate evaluation of gyroaverages for nonperiodic simulations

Antoine Cerfon and Joe Guadagni
Courant Institute of Mathematical Sciences, NYU
2017 International Sherwood Fusion Theory Conference Annapolis, MD

Motivation - Abstract

- In many situations in plasma physics, gyrokinetics needs to be applied to problems with non-periodic boundary conditions
- Physical quantitites cannot be expanded as Fourier series \Rightarrow Numerical evaluation of their gyroaverages challenging, and in practice often not very accurate
- We propose a new method for gyroaveraging based on the combination of Fourier transforms and a Hankel transform Our numerical scheme relies on fast and high order accurate algorithms
- Focusing on the gyrokinetic-Poisson system, we demonstrate geometric convergence for a near-optimal computational complexity $(N+\hat{N}) \log (N+\hat{N})$ N : \# of grid points in real space; \hat{N} : \# of grid points in Fourier space

Nonperiodic Gyrokinetics: Example

Beam spiraling in cyclotrons

Beam breakup in cyclotrons

Simple test bed

- Gyrokinetic-Poisson system in uniform magnetic field $\mathbf{B}=\mathbf{e}_{z}$ Let $\mathbf{r}=\mathbf{R}+\boldsymbol{\rho}=\langle X, Y\rangle+\langle-\rho \sin \gamma, \rho \cos \gamma\rangle$

R: guiding center position; ρ : Larmor radius; γ : gyrophase

$$
\begin{aligned}
\frac{\partial f}{\partial t}+\boldsymbol{e}_{z} & \times\left\langle\nabla_{r} \Phi\right\rangle_{\boldsymbol{R}} \cdot \nabla_{\boldsymbol{R}} f=0 \\
\nabla_{r}^{2} \Phi(\boldsymbol{r}, t) & =-\int_{0}^{+\infty} \int_{0}^{2 \pi} f(x+\rho \sin \gamma, y-\rho \cos \gamma, \rho, t) \rho \mathrm{d} \rho \mathrm{~d} \gamma \\
& \equiv-2 \pi \tilde{f}(x, y, t)
\end{aligned}
$$

$\langle\cdot\rangle_{\mathbf{R}}$: gyroaverage at fixed guiding centre position \mathbf{R} :

$$
\begin{equation*}
\langle\Phi\rangle_{R}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi(X-\rho \sin \gamma, Y+\rho \cos \gamma, t) \mathrm{d} \gamma \tag{1}
\end{equation*}
$$

where X and Y fixed are held fixed.

DIfficulties with Gyroaverage potential

- In Fourier space, gyroaveraging is just multiplication by $J_{0}\left(k_{\perp} \rho\right)$ - GOOD
- Difficulty: Φ not necessarily periodic, and may be unbounded or very slowly decaying
- Well-known efficient Fourier methods not applicable - BAD
- Two methods typically used to address this difficulty:
- Direct numerical quadrature (e.g. Using cubic basis)
- Replace multiplication by J_{0} with Padé approximant, so that gyroaveraging in real space tantamount to solving tractable PDE
- All methods typically low order accurate

REFORMULATING THE EQUATIONS

- Reformulate gyrokinetic - Poisson system as

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+\boldsymbol{e}_{z} \times \nabla \chi \cdot \nabla f=0 \\
& \nabla^{2} \chi=-2 \pi\langle\tilde{f}\rangle
\end{aligned}
$$

with

$$
-2 \pi\langle\tilde{f}\rangle \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} \tilde{f}(X+\rho \sin \gamma, Y-\rho \cos \gamma, t) \mathrm{d} \gamma
$$

- Function to gyroaverage is now compactly supported
- Its Fourier transform is numerically well defined
- Drawback: χ depends on $\rho \Rightarrow$ Poisson's equation needs to be solved several times
Acceptable drawback with existence of very efficient Fast Poisson solvers

Why Fourier series do not work for $\langle\tilde{f}\rangle$

Incorrect
contributions to desired integral

Fourier and Hankel transforms

Fourier transform

$$
\hat{u}(\boldsymbol{\xi}, \rho) \equiv\left(\mathcal{F}_{x} u\right)(\boldsymbol{\xi}, \rho)=\int_{\mathbb{R}^{2}} u(\boldsymbol{x}, \rho) \mathrm{e}^{-\mathrm{i} \boldsymbol{\xi} \cdot \boldsymbol{x}} \mathrm{~d} \boldsymbol{x}
$$

Inverse Fourier transform:

$$
\check{u}(\boldsymbol{x}, \rho) \equiv\left(\mathcal{F}_{\boldsymbol{\xi}}^{-1} u\right)(\boldsymbol{x}, \rho)=\frac{1}{4 \pi^{2}} \int_{\mathbb{R}^{2}} u(\boldsymbol{\xi}, \rho) \mathrm{e}^{\mathrm{i} \boldsymbol{\xi} \cdot \boldsymbol{x}} \mathrm{~d} \boldsymbol{x}
$$

Hankel transform

$$
\left(\mathcal{H}_{0} u\right)(s)=\int_{0}^{\infty} u(\rho) J_{0}(\rho s) \rho \mathrm{d} \rho
$$

We have the identity:

$$
\begin{aligned}
(\mathcal{F} \tilde{f})(\boldsymbol{\xi}, t) & =\int_{0}^{\infty}(\mathcal{F}\langle f\rangle)(\boldsymbol{\xi}, \rho, t) \rho \mathrm{d} \rho \\
& =\int_{0}^{\infty} J_{0}(\rho \xi)(\mathcal{F} f)(\boldsymbol{\xi}, \rho, t) \rho \mathrm{d} \rho=\left(\mathcal{H}_{0} \mathcal{F} f\right)(\boldsymbol{\xi}, t)
\end{aligned}
$$

Fourier and Hankel transforms

Likewise,

$$
(\mathcal{F}\langle\tilde{f}\rangle)(\boldsymbol{\xi}, \rho, t)=J_{0}(\rho \xi)(\tilde{\mathcal{F}} \tilde{f})(\boldsymbol{\xi}, t)=J_{0}(\rho \xi)\left(\mathcal{H}_{0} \mathcal{F} f\right)(\boldsymbol{\xi}, t)
$$

Hence,

$$
\langle\tilde{f}\rangle(\mathbf{x}, \rho, t)=\mathcal{F}^{-1}\left(J_{0}(\rho \xi) \mathcal{H}_{0} \mathcal{F} f\right)(\boldsymbol{x}, \rho, t) \equiv \mathcal{G} f(\boldsymbol{x}, \rho, t)
$$

which leads to the following numerical scheme for $\langle\tilde{f}\rangle$:

PART I: EVALUATING $\mathcal{F f}(\mathrm{I})$

- Focus on 1-variable case for the simplicity of the notation:

$$
\hat{u}(\xi)=\int_{-\infty}^{\infty} u(x) \mathrm{e}^{-\mathrm{i} \xi x} \mathrm{~d} x
$$

u is compactly supported on the domain $I=\left[-\frac{a}{2}, \frac{a}{2}\right]$

- Write u as the exact series

$$
u(x)=\left(\sum_{k=-\infty}^{\infty} c_{k} \mathrm{e}^{2 \pi \mathrm{i} k x / a}\right) \mathbf{1}_{I}(x), \quad c_{k}=\frac{1}{a} \int_{-a / 2}^{a / 2} u(x) \mathrm{e}^{-2 \pi \mathrm{i} k x / a} \mathrm{~d} x
$$

Compute the c_{k} with the FFT

- Exact expression for the Fourier transform of u :

$$
\hat{u}(\xi)=a \sum_{k=-\infty}^{\infty} c_{k} \operatorname{sinc}\left(k-\frac{a \xi}{2 \pi}\right)
$$

PART II: EVALUATING $\mathcal{F} f(\mathrm{I})$

- Fast and spectrally accurate evaluation of sum with the Fast Sinc Transform ${ }^{1}$
- Method allows ξ grid in Fourier space to be arbitrary

Choose Chebyshev grid for spectrally accurate operations in Fourier space

Choose \# of grid points \hat{N} to efficiently resolve function in Fourier space

- Run time complexity of the FST: $O(N+\hat{N}) \log (N+\hat{N})$
${ }^{1}$ L. Greengard, L., J.-Y. Lee and S. Inati CAMCoS, 1, 121 (2006)

Part II: Evaluating $\mathcal{H}_{0} \mathcal{F} f$

$$
H(\xi)=\int_{0}^{\infty} h(\rho) J_{0}(\rho \xi) \rho \mathrm{d} \rho
$$

$h=0$ outside the interval $I_{\rho}=[0, \bar{\rho}]$.

- Evaluate integral with Clenshaw-Curtis quadrature, with a Chebyshev grid for I_{ρ} :

$$
\begin{equation*}
H(\xi) \approx \sum_{k=1}^{N_{\rho}} w_{k} h\left(\rho_{k}\right) J_{0}\left(\rho_{k} \xi\right) \rho_{k} \tag{2}
\end{equation*}
$$

- For fixed computational ρ - and ξ - grids, $w_{k} J_{0}\left(\rho_{k} \xi\right) \rho_{k}$ can be precomputed.
- Each Hankel integral is inner product of a time-dependent data vector and a vector of fixed kernel weights.
- Time spent computing $\mathcal{H}_{0} \mathcal{F f}$ negligible compared to time spent computing $\mathcal{F} f$.

Part III: Evaluating $\mathcal{G f}=\mathcal{F}^{-1}\left(\mathcal{H}_{0} \mathcal{F} f\right)$

$$
u(x)=\frac{1}{2 \pi} \int_{-\hat{a}}^{\hat{a}} \hat{u}(\xi) \mathrm{e}^{\mathrm{i} \xi x} \mathrm{~d} \xi
$$

- Use ξ Chebyshev grid chosen for that purpose, and write

$$
u\left(x_{j}\right) \approx \frac{1}{2 \pi} \sum_{k=1}^{\hat{\mathrm{N}}} w_{k} \hat{u}\left(\xi_{k}\right) \mathrm{e}^{\mathrm{i} \xi_{k} x_{j}}
$$

with w_{k} the Clenshaw-Curtis weights

- Compute this sum in near-optimal run time $O(N+\hat{N}) \log (N+\hat{N})$ with the Non Uniform Fast Fourier Transform (NUFFT) ${ }^{2,3}$

[^0]
Numerical results: Test case

- Take f as

$$
f(x, y, \rho)=\mathrm{e}^{-A\left(x^{2}+y^{2}\right)} \mathrm{e}^{-B \rho^{2}}
$$

where $A=B=15$

- One can calculate $\mathcal{G f}$ analytically:

$$
\mathcal{G} f(x, y, \rho)=\frac{1}{2(A+B)} \mathrm{e}^{-\alpha\left(x^{2}+y^{2}+\rho^{2}\right)} I_{0}\left(2 \alpha \rho \sqrt{x^{2}+y^{2}}\right)
$$

where $\frac{1}{\alpha}=\frac{1}{A}+\frac{1}{B}$ and $I_{0}(z)$ is the modified Bessel function of the first kind of order 0 .

- Interval sizes

Real space: $(x, y) \in[-3,3]$
Fourier space : $\left(\xi_{x}, \xi_{y}\right) \in[-66,66]$
gyroradius : $\rho \in[0,1.55]$

Numerical results

$L_{N}=12$

$L_{\hat{N}}=4.5$

$L_{N}=12$

$L_{\hat{N}}=4.5$

Numerical results

$L_{N_{\rho}}=35$
$L_{N_{\rho}}=35$

- Exponential decrease of the error as we increase all three sampling rates uniformly
- For $L_{N}=12, L_{\hat{N}}=4.5$, and $L_{N_{\rho}}=35$, the error is on the order of 10^{-13}

SUMMARY

- We presented a fast, spectrally accurate numerical scheme for the evaluation of the gyroaveraged electrostatic potential in gyrokinetic Poisson simulations
- We successfully applied our method to simulate the dynamics of intense beams in cyclotrons

Future work

- Extend formulation to more general gyrokinetic equation
- Spatial dependence of the magnetic field
- Electromagnetic effects
- Application to nonperiodic simulations of turbulent transport in fusion devices

[^0]: ${ }^{2}$ A. Dutt and V. Rokhlin SIAM J. Sci. Comput., 1, 121 (1993)
 ${ }^{3}$ J.-Y. Lee and L. Greengard J. Comp. Phys 206, 1 (2005)

