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MOTIVATION – ABSTRACT

I In many situations in plasma physics, gyrokinetics needs to be
applied to problems with non-periodic boundary conditions

I Physical quantitites cannot be expanded as Fourier series
⇒ Numerical evaluation of their gyroaverages challenging, and
in practice often not very accurate

I We propose a new method for gyroaveraging based on the
combination of Fourier transforms and a Hankel transform
Our numerical scheme relies on fast and high order accurate
algorithms

I Focusing on the gyrokinetic-Poisson system, we demonstrate
geometric convergence for a near-optimal computational
complexity (N + N̂) log(N + N̂)

N: # of grid points in real space; N̂: # of grid points in Fourier
space



NONPERIODIC GYROKINETICS: EXAMPLE

Beam spiraling
in cyclotrons

Beam breakup in
cyclotrons



SIMPLE TEST BED

I Gyrokinetic-Poisson system in uniform magnetic field B = ez
Let r = R + ρ = 〈X,Y〉+ 〈−ρ sin γ, ρ cos γ〉

R: guiding center position; ρ: Larmor radius; γ: gyrophase

∂f
∂t

+ ez × 〈∇rΦ〉R · ∇Rf = 0

∇2
r Φ(r, t) = −

∫ +∞

0

∫ 2π

0
f (x + ρ sin γ, y− ρ cos γ, ρ, t) ρdρdγ

≡ −2πf̃ (x, y, t)

〈·〉R : gyroaverage at fixed guiding centre position R:

〈Φ〉R =
1

2π

∫ 2π

0
Φ(X − ρ sin γ,Y + ρ cos γ, t) dγ (1)

where X and Y fixed are held fixed.



DIFFICULTIES WITH GYROAVERAGE POTENTIAL

I In Fourier space, gyroaveraging is just multiplication by J0(k⊥ρ)
– GOOD

I Difficulty: Φ not necessarily periodic, and may be unbounded or
very slowly decaying

I Well-known efficient Fourier methods not applicable – BAD

I Two methods typically used to address this difficulty:
I Direct numerical quadrature (e.g. Using cubic basis)
I Replace multiplication by J0 with Padé approximant, so that

gyroaveraging in real space tantamount to solving tractable PDE

I All methods typically low order accurate



REFORMULATING THE EQUATIONS

I Reformulate gyrokinetic - Poisson system as

∂f
∂t

+ ez ×∇χ · ∇f = 0

∇2χ = −2π〈f̃ 〉

with

−2π〈f̃ 〉 ≡ 1
2π

∫ 2π

0
f̃ (X + ρ sin γ,Y− ρ cos γ, t) dγ

I Function to gyroaverage is now compactly supported
I Its Fourier transform is numerically well defined
I Drawback: χ depends on ρ⇒ Poisson’s equation needs to be

solved several times
Acceptable drawback with existence of very efficient Fast
Poisson solvers



WHY FOURIER SERIES DO NOT WORK FOR 〈f̃ 〉

Incorrect
contributions to
desired integral



FOURIER AND HANKEL TRANSFORMS
Fourier transform

û(ξ, ρ) ≡ (Fxu)(ξ, ρ) =

∫
R2

u(x, ρ)e−iξ·x dx

Inverse Fourier transform:

ǔ(x, ρ) ≡ (F−1
ξ u)(x, ρ) =

1
4π2

∫
R2

u(ξ, ρ)eiξ·x dx

Hankel transform

(H0u)(s) =

∫ ∞
0

u(ρ)J0(ρs) ρdρ

We have the identity:

(F f̃ )(ξ, t) =

∫ ∞
0

(F〈f 〉)(ξ, ρ, t) ρdρ

=

∫ ∞
0

J0(ρξ)(F f )(ξ, ρ, t) ρdρ = (H0F f )(ξ, t)



FOURIER AND HANKEL TRANSFORMS

Likewise,

(F〈f̃ 〉)(ξ, ρ, t) = J0(ρξ)(F f̃ )(ξ, t) = J0(ρξ)(H0F f )(ξ, t)

Hence,

〈f̃ 〉(x, ρ, t) = F−1 (J0(ρξ)H0F f ) (x, ρ, t) ≡ Gf (x, ρ, t)

which leads to the following numerical scheme for 〈f̃ 〉:



PART I: EVALUATING F f (I)
I Focus on 1-variable case for the simplicity of the notation:

û(ξ) =

∫ ∞
−∞

u(x)e−iξx dx

u is compactly supported on the domain I = [− a
2 ,

a
2 ]

I Write u as the exact series

u(x) =

 ∞∑
k=−∞

cke2πikx/a

 1I(x) , ck =
1
a

∫ a/2

−a/2
u(x)e−2πikx/a dx

Compute the ck with the FFT
I Exact expression for the Fourier transform of u:

û(ξ) = a
∞∑

k=−∞

ck sinc
(

k− aξ
2π

)



PART II: EVALUATING F f (I)

I Fast and spectrally accurate evaluation of sum with the Fast Sinc
Transform1

I Method allows ξ grid in Fourier space to be arbitrary

Choose Chebyshev grid for spectrally accurate operations in
Fourier space

Choose # of grid points N̂ to efficiently resolve function in
Fourier space

I Run time complexity of the FST: O(N + N̂) log(N + N̂)

1L. Greengard, L., J.-Y. Lee and S. Inati CAMCoS, 1, 121 (2006)



PART II: EVALUATING H0F f

H(ξ) =

∫ ∞
0

h(ρ)J0(ρξ) ρdρ

h = 0 outside the interval Iρ = [0, ρ].

I Evaluate integral with Clenshaw-Curtis quadrature, with a
Chebyshev grid for Iρ:

H(ξ) ≈
Nρ∑
k=1

wkh(ρk)J0(ρkξ)ρk (2)

I For fixed computational ρ- and ξ- grids, wkJ0(ρkξ)ρk can be
precomputed.

I Each Hankel integral is inner product of a time-dependent data
vector and a vector of fixed kernel weights.

I Time spent computingH0F f negligible compared to time spent
computing F f .



PART III: EVALUATING Gf = F−1(H0F f )

u(x) =
1

2π

∫ â

−â
û(ξ)eiξx dξ

I Use ξ Chebyshev grid chosen for that purpose, and write

u(xj) ≈
1

2π

N̂∑
k=1

wkû(ξk)eiξkxj

with wk the Clenshaw-Curtis weights

I Compute this sum in near-optimal run time
O(N + N̂) log (N + N̂) with the Non Uniform Fast Fourier
Transform (NUFFT)2,3

2A. Dutt and V. Rokhlin SIAM J. Sci. Comput., 1, 121 (1993)
3J.-Y. Lee and L. Greengard J. Comp. Phys 206, 1 (2005)



NUMERICAL RESULTS: TEST CASE

I Take f as
f (x, y, ρ) = e−A(x2+y2)e−Bρ2

where A = B = 15
I One can calculate Gf analytically:

Gf (x, y, ρ) =
1

2(A + B)
e−α(x

2+y2+ρ2)I0

(
2αρ

√
x2 + y2

)
where 1

α = 1
A + 1

B and I0(z) is the modified Bessel function of the
first kind of order 0.

I Interval sizes

Real space : (x, y) ∈ [−3, 3]

Fourier space : (ξx, ξy) ∈ [−66, 66]

gyroradius : ρ ∈ [0, 1.55]



NUMERICAL RESULTS

LN = 12 LN = 12

LN̂ = 4.5 LN̂ = 4.5



NUMERICAL RESULTS

LNρ = 35 LNρ = 35

I Exponential decrease of the error as we increase all three
sampling rates uniformly

I For LN = 12, LN̂ = 4.5, and LNρ = 35, the error is on the order of
10−13



SUMMARY

I We presented a fast, spectrally accurate numerical scheme for the
evaluation of the gyroaveraged electrostatic potential in
gyrokinetic Poisson simulations

I We successfully applied our method to simulate the dynamics of
intense beams in cyclotrons

Future work
I Extend formulation to more general gyrokinetic equation

I Spatial dependence of the magnetic field
I Electromagnetic effects

I Application to nonperiodic simulations of turbulent transport in
fusion devices


