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Introduction The Discontinuous Galerkin Method

Abstract

Discontinuous Galerkin (DG) methods provide local high-order adaptive numerical
schemes for the solution of convection-diffusion problems. They combine the
advantages of finite element and finite volume methods. In particular, DG methods
automatically ensure the conservation of all first-order invariants provided that
single-valued fluxes are prescribed at inter-element boundaries. For the 2D
incompressible Euler equation, this implies that the discretized fluxes globally obey
Gauss’ and Stokes’ laws exactly, and that they conserve total vorticity. Combining a
continuous Galerkin (CG) solution of Poisson’s equation with a central DG flux for the
convection term leads to an algorithm that conserves the principal two quadratic
invariants, namely the energy and enstrophy. Here, we present a discretization that
applies the DG method to Poisson’s equation as well as to the vorticity equation while
maintaining conservation of the quadratic invariants. Acknowledgements This work was

funded by the United States DOE, Office of Science, OFES contract No. DE-FG02-04ER-54742
and by the NSF Div. of Advanced Cyber Infrastructure grant No. 1339801.
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Introduction The Discontinuous Galerkin Method

Discontinuous Galerkin: A local conservative
high-order adaptive method

The motivation for the discontinuous Galerkin (DG) method is to
maintain locality while achieving high-order accuracy on
unstructured meshes

I Unstructured for geometric flexibility
I High order for accuracy
I Local for parallel efficiency
I Automatic element-wise conservation of first-order invariants

Complex High-order accuracy Explicit semi- Conservation Elliptic
geometries and hp-adaptivity discrete form laws problems

FDM
FVM ( )
FEM ( )
DG-FEM ( )
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Introduction The Discontinuous Galerkin Method

Previous conservative DG algorithms

Liu and Shu [1] have proposed a DG discretization of 2D Euler
using a Continuous Galerkin (CG) algorithm to invert Poisson’s
equation. Their algorithm can conserve enstrophy as well as
energy, but allowing some enstrophy decay improves the
robustness of the scheme.
Einkemmer and Wiesenberger [2] have extended the Arakawa
method to apply to a DG discretization but this only works for
periodic boundary conditions.
In this poster, we examine the conservation of quadratic invariants
for the 2D Euler problem when both Poisson’s equation and the
vorticity equation are solved using the DG method.
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Introduction The incompressible 2D Euler model

Governing equations

The system describing incompressible and inviscid 2D flows is

∂tU = −ez · (∇φ×∇U); (1)
U = ∇2φ; (2)
φ = φb on ∂Ω, (3)

where φb is given and ∂Ω is the boundary of the domain Ω.
This is the archetype of a class of nonlinear fluid problems that
includes many multi-scale dynamical systems important in plasma
physics.
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Introduction The incompressible 2D Euler model

Conservation properties of the incompressible 2D
Euler model

The 2D Euler model conserves the following energy:

H(φ) =
1
2

∫
d2x (∇φ)2. (4)

In addition to conserving H, it also conserves the moment and a
family of Casimir invariants,

M =

∫
d2x xU. (5)

G(φ) =

∫
d2x g(U), (6)

The choice g(U) = U2 corresponds to the enstrophy.
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Discretization of Poisson’s equation Weak formulation

Weak formulation

To discretize the equations, we introduce E = ∇φ.
In terms of this auxiliary variable E, Poisson’s equation is

U = ∇ · E; (7)
φ = φb(x) on ∂Ω. (8)

The weak formulation of the problem is:∫
K

d2x wUh =

∫
∂K

ds w Ê · n−
∫

K
d2x Eh · ∇hw ; (9)∫

K
d2x ξ · Eh =

∫
∂K

ds φ̂ξ · n−
∫

K
d2x φh∇h · ξ. (10)

Here n is the outward unit normal to the boundary ∂K of the
element, Ê and φ̂ are the numerical fluxes across the element
boundaries
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Discretization of Poisson’s equation Gauss’ law

Gauss’ law

For w = 1 Eq. (9) becomes∫
K

d2x Uh =

∫
∂K

ds Ê · n, (11)

Note that for a plasma the vorticity is proportional to the
polarization charge density, so that the above identity expresses
the element-wise applicability of Gauss’ law.
If the numerical flux is conservative, Gauss’ law may be extended
to macroscopic volumes by summing over elements:∫

Ω
d2x Uh =

∫
∂Ω

ds Ê · n, (12)
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Discretization of Poisson’s equation Stokes’ law

Stokes’ law

v=
Cs
t

∂K+

∂K-

φ+

φ−

Taking ξ = ez ×∇hv in Eq. (10), we
have ∇ · ξ = 0.
Consider a curvlinear coordinate
system (u(x , y), v(x , y)).
The length element along lines of
constant v is
d` = du/e` · ∇hu = |∇hv |J (v ,u) du.

Changing coordinates in Eq. (10), there follows∫
K

dv d`e` · Eh =

∫
∂K +

dv φ̂−
∫
∂K−

dv φ̂.

For single-valued φ̂, this can again be extended to macroscopic
volumes by summing over K s.
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Discretization of Poisson’s equation Primal form and the kinetic energy

Primal form

An alternative to solving Eqs. (9)-(10) is to eliminate E, obtaining a
variational equation for φ alone in terms of the primal form LΩ [3]

LΩ(φh,w) = −
∫

K
d2x wUh, (13)

where

LK (φh,w) =

∫
K

d2x ∇hφh · ∇hw

−
∫
∂K

ds [(φ̂− φh)n · ∇hw − w Ê · n] (14)
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Discretization of Poisson’s equation Primal form and the kinetic energy

Interior Penalty method

The classic IP method corresponds to the choice of fluxes

φ̂ = {φh} on Γ0 and φ̂ = 0 on ∂Ω; (15)
Ê = {∇hφh} − αj([[φh]]) on Γ; (16)

where α(x) = αjx on each edge ej “penalizes” the discontinuities.
The corresponding primal form is symmetric,

LΩ(φh,w) =

∫
Ω

d2x ∇hφh · ∇hw −
∫

Γ
ds [[w ]] · α([[φh]])

−
∫

Γ
ds ([[φh]] · ∇h{w}+ [[w ]] · ∇h{φh}). (17)
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Discretization of Poisson’s equation Primal form and the kinetic energy

Kinetic energy

We obtain a numerical kinetic energy by taking the time derivative
of Poisson’s equation (13) and replacing the test function w by φ:

1
2

d
dt
LΩ(φh, φh) = −

∫
Ω

d2x φh∂tUh (18)

The above shows that LΩ(φh, φh) changes at a rate determined by
the work done by the convection of vorticity.
We will show that this is small and can be made to vanish.
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Discretization of the vorticity equation Weak form of the vorticity equation

Weak form of the vorticity equation

The weak form of the vorticity equation is∫
K

d2x v∂tUh =

∫
∂K

ds vÛEh · t−
∫

K
d2x Uh(Eh × ez) · ∇hv , (19)

where v is a test function, t = ez × n and ÛEh is the numerical
flux at element boundaries.
When using the primal form of Poisson’s equation, we must
eliminate Eh:∫

K
d2x v∂tUh =

∫
∂K

ds (vÛEh + φ̂Uh∇hv) · t

+

∫
K

d2x φh(∇Uh × ez) · ∇hv , (20)
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Discretization of the vorticity equation Energy conservation

Energy conservation

Replacing w by φ in the weak form of the vorticity equation and
integrating by parts yields the following form for the work done by
vorticity convection:∫

Ω
d2x φh∂tUh =

∫
Γ

ds (n · [[φh]])t · (ÛEh − {Uh∇hφh})

−
∫

Γ0
ds (φ̂− {φh})[[ez × Uh∇hφh]]

Energy is thus conserved by the following choice of flux:

ÛEh = {Uh∇hφh} (21)
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Discretization of the vorticity equation Enstrophy conservation

Enstrophy conservation

Replacing w by U in the weak form of the vorticity equation and
integrating yields

1
2

d
dt

∫
K

d2x U2
h =

∫
∂K

ds [Uh(t · ÛEh) + φ̂(t · ∇hU2
h/2)]

We next integrate the last term by parts. After summing over the
elements, we find

1
2

d
dt

∫
K

d2x U2
h =

∫
Γ

ds (n · [[Uh]]) t · (ÛEh − {Uh}∇hφ̂) (22)

where the ∇hφ̂ contains δ-function vertex-contributions from the
discontinuities of φ̂.
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Discretization of the vorticity equation Enstrophy conservation

Illustration of vertex contributions

The following choice of flux conserves enstrophy:

ÛEh = {Uh}∇hφ̂ (23)
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Summary

Summary

Using DG for Poisson’s as well as the vorticity equation, it is
possible to conserve enstrophy or vorticity but not both.
The Poincaré inequality implies that the enstrophy bounds the
kinetic energy: ∫

Ω
d2x (∇φ)2 <

∫
Ω

d2x U2.

It follows that conserving enstrophy will ensure stability of both
velocity and vorticity.
Similar techniques can be used to construct DG formulations of
the 2D Navier-Stokes equations with the desired stability and
conservation properties.
Numerical implementation is underway.
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Summary
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