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MOTIVATION
I 3D equilibrium calculations with SPEC1

I Plasma domain divided into regions which are in relaxed Taylor
states, separated by ideal MHD interfaces

I Magnetic field for a Taylor state given by

∇× B = µB

with µ = cst
1S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G. von Nessi, and

S. Lazerson, “Computation of multi-region relaxed magnetohydrodynamic
equilibria”, Phys. Plasmas 19, 112502 (2012)



MOTIVATION - SOLVER FOR TAYLOR RELAXED STATE

I SPEC solves ∇× B = µB with a Fourier discretization in angle,
and finite elements in the radial direction

δj = j− µB

I Idea: Use integral equation representation to solve for the
Beltrami field in each region

I ∇× B− µB ≡ 0 identically satisfied
I Same high order convergence for B and for J
I Low memory requirements (only the boundary of the domain has

to be discretized)
I Fast algorithms available (O(N log N) for N degrees of freedom)



WELL-POSED PROBLEM

I For a given µ, solve for B solution of

∇× B = µB in Ω

n · B = 0 on Γ ≡ ∂Ω∫
St

B · dS = Φtor and
∫

Sp

B · dS = Φpol

I Note: if Ω has genus 1, one flux condition is sufficient



SPINORS AS SOLUTIONS TO BELTRAMI EQUATION
I Time-harmonic Maxwell’s equations in a region free of charge

and current:

∇× E = iωH ∇×H = −iωE

I Spinor S+ = E + iH satisfies

∇× S+ = iωH− i(iωE) = ωS+

I Choose Lorenz gauge for E and H

H = ∇×A E = iωA−∇u ∇ ·A = iωu

to represent Beltrami field B as

B = iωA−∇u + i∇×A

I Replace ω with µ for Beltrami problem of interest
I Need a representation for A and u



GENERALIZED DEBYE REPRESENTATION OF THE

POTENTIALS 2

I A and u are written as

A(x) =

∫
Γ

eiµ|x−x′|

4π|x− x′|
m(x′)dA′ u(x) =

∫
Γ

eiµ|x−x′|

4π|x− x′|
σ(x′)dA′

I m and σ are related through

m = iµ
(
∇Γ∆−1

Γ σ − i n×∇Γ∆−1
Γ σ

)
+ α mH.

∇Γ is the surface gradient operator
∆−1

Γ is the inverse of the surface Laplacian along Γ restricted to
the class of mean-zero functions
mH is a tangential harmonic vector field satisfying

∇Γ ·mH = 0, ∇Γ · n×mH = 0 n×mH = −i mH.

α: complex number determined by B.C.
2C.L. Epstein, L. Greengard, and M. ONeil. “Debye Sources, Beltrami Fields, and

a Complex Structure on Maxwell Fields”, Comm. Pure Appl. Math. 68(12):22372280,
2016



INTEGRAL EQUATION FOR σ AND α

I Applying B · n = 0 and the flux condition leads to the following
integral equations for σ and α:

σ

2
− n · ∇

∫
Γ

eiµ|x−x′|

4π|x− x′|
σ(x′)dS′

+ iµn ·
∫

Γ

eiµ|x−x′|

4π|x− x′|
mdS′ + in · ∇ ×

∫
Γ

eiµ|x−x′|

4π|x− x′|
mdS′ = 0

1
µ

∫
∂St

B · dl = Φtor

I Well-conditioned, second kind integral equation
I Similar formulation (with more terms) for toroidal shells



NUMERICS

I Use 16th order hybrid Gauss-trapezoidal rule to evaluate
singular integrals

I Use Fourier spectral differentiation matrix to evaluate∇Γ

I Compute ∆−1
Γ by solving

(∆Γ +

∫
Γ

dS)ω = f

Invertible equation, and ω satisfies ∆Γω = f and
∫

Γ ωdS = 0

I Major simplifications for axisymmetric equilibria:
1. There is a closed form formula for the harmonic surface vector

field mH
2. High order accuracy achieved with few unknowns⇒ dense linear

algebra solvers fast



TESTING THE SOLVER: CONSTRUCTING EXACT

TAYLOR STATES 3

I View Taylor state as Grad-Shafranov equilibrium

∆∗ψ = −µ2ψ in Ω, ψ = 0 on Γ

I A general solution is

ψ(r, z, c1, c2, c3, c4, c5, c6, λ) = ψ0 + c1ψ1 + c2ψ2 + c3ψ3 + c4ψ4 + c5ψ5

ψ0 = rJ1(µr) , ψ1 = rY1(µr) , ψ2 = rJ1

(√
µ2 − c2

6r
)

cos(c6z)

ψ3 = rY1

(√
µ2 − c2

6r
)

cos(c6z) , ψ4 = cos
(
µ
√

r2 + z2
)

ψ5 = cos (µz)

I The toroidal flux is then given by Φtor = µ
∫∫

Ω
ψ
r drdz

I For Taylor states with X-points, need 5 more terms and 5 more ci
3A.J. Cerfon and M. O’Neil, “Exact axisymmetric Taylor states for shaped

plasmas”, Phys. Plasmas 21, 064501 (2014)



TESTING THE SOLVER: CONSTRUCTING EXACT

TAYLOR STATES

I Treat µ as unknown along with the 6 ci

I Solve for the unknowns by imposing 7 conditions on ψ = 0 curve



ψ(1 + ε, 0,C) = 0
ψ(1− ε, 0,C) = 0
ψ(1− δε,−κε,C) = 0
ψr(1− δε,−κε,C) = 0
ψzz(1 + ε, 0,C) + N1ψr(1 + ε, 0,C) = 0
ψzz(1− ε, 0,C) + N2ψr(1− ε, 0,C) = 0
ψrr(1− δε,−κε,C) + N3ψz(1− δε,−κε,C) = 0

N1, N2, N3: curvatures at three points (1 + ε, 0),
(1− ε, 0), (1− δε, κε)



COMPARISON WITH EXACT TAYLOR STATE
I Challenging very low aspect ratio, high elongation Taylor state:
ε = 0.95, κ = 2, δ = 0.3
µ = 2.281569790667846



RESULTS

Nb ||Bex − Bnum||2 Tbuild(s) Tsolve(s)
25 8.49E-03 1.4E-01 4.8E-05
50 7.74E-05 3.8E-01 1.2E-04
100 1.21E-07 1.3E+00 5.5E-04
200 3.67E-08 6.0E+00 3.5E-03
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SUMMARY - FUTURE WORK

I A generalized Debye representation of the magnetic field is a
natural formulation for magnetic fields in Taylor states

I The formulation leads to a well-conditioned integral equation of
the second kind

I The associated numerical solver is high order accurate and has
low memory requirements

I Future work:
I (Near term) More complete convergence tests for toroidal and

toroidal shell regions
I (Longer term, though already ongoing): apply method to

nonaxisymmetric Taylor states

1. Numerical computation of harmonic surface vector fields
(Lise-Marie Imbert-Gérard)

2. Implement fast direct solvers or FMM methods for dense linear
system


