A fast, high order accurate solver for Taylor states in general toroidal geometries

Antoine Cerfon and Mike O'Neil Courant Institute of Mathematical Sciences, NYU

2016 International Sherwood Fusion Theory Conference Madison, WI

MOTIVATION

► 3D equilibrium calculations with SPEC¹

- Plasma domain divided into regions which are in relaxed Taylor states, separated by ideal MHD interfaces
- ► Magnetic field for a Taylor state given by

$$\nabla \times \mathbf{B} = \mu \mathbf{B}$$

with $\mu = cst$

¹S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G. von Nessi, and S. Lazerson, "Computation of multi-region relaxed magnetohydrodynamic equilibria". *Phys. Plasmas* **19**, 112502 (2012)

MOTIVATION - SOLVER FOR TAYLOR RELAXED STATE

► SPEC solves $\nabla \times \mathbf{B} = \mu \mathbf{B}$ with a Fourier discretization in angle, and finite elements in the radial direction

$$\delta \mathbf{j} = \mathbf{j} - \mu \mathbf{B}$$

- ► <u>Idea</u>: Use <u>integral equation representation</u> to solve for the Beltrami field in each region
 - ▶ $\nabla \times \mathbf{B} \mu \mathbf{B} \equiv 0$ identically satisfied
 - ► Same high order convergence for **B** and for **J**
 - ► Low memory requirements (only the boundary of the domain has to be discretized)
 - ► Fast algorithms available ($O(N \log N)$ for N degrees of freedom)

Well-posed problem

▶ For a given μ , solve for **B** solution of

$$egin{aligned}
abla imes \mathbf{B} &= \mu \mathbf{B} & ext{in } \Omega \ \mathbf{n} \cdot \mathbf{B} &= 0 & ext{on } \Gamma \equiv \partial \Omega \ \\ \int_{S_t} \mathbf{B} \cdot d\mathbf{S} &= \Phi^{tor} & ext{and} & \int_{S_p} \mathbf{B} \cdot d\mathbf{S} &= \Phi^{pol} \end{aligned}$$

▶ Note: if Ω has genus 1, one flux condition is sufficient

SPINORS AS SOLUTIONS TO BELTRAMI EQUATION

► Time-harmonic Maxwell's equations in a region free of charge and current:

$$\nabla \times \mathbf{E} = i\omega \mathbf{H}$$
 $\nabla \times \mathbf{H} = -i\omega \mathbf{E}$

► Spinor $S_+ = E + iH$ satisfies

$$\nabla \times \mathbf{S}_{+} = i\omega \mathbf{H} - i(i\omega \mathbf{E}) = \omega \mathbf{S}_{+}$$

► Choose Lorenz gauge for **E** and **H**

$$\mathbf{H} = \nabla \times \mathbf{A} \qquad \mathbf{E} = i\omega \mathbf{A} - \nabla u \qquad \nabla \cdot \mathbf{A} = i\omega u$$

to represent Beltrami field **B** as

$$\mathbf{B} = i\omega \mathbf{A} - \nabla u + i\nabla \times \mathbf{A}$$

- ightharpoonup Replace ω with μ for Beltrami problem of interest
- ▶ Need a representation for **A** and *u*

GENERALIZED DEBYE REPRESENTATION OF THE POTENTIALS ²

► A and *u* are written as

$$\mathbf{A}(\mathbf{x}) = \int_{\Gamma} \frac{e^{i\mu|\mathbf{x} - \mathbf{x}'|}}{4\pi|\mathbf{x} - \mathbf{x}'|} \mathbf{m}(\mathbf{x}') dA' \qquad u(\mathbf{x}) = \int_{\Gamma} \frac{e^{i\mu|\mathbf{x} - \mathbf{x}'|}}{4\pi|\mathbf{x} - \mathbf{x}'|} \sigma(\mathbf{x}') dA'$$

m and σ are related through

$$\mathbf{m} = i\mu \left(\nabla_{\Gamma} \Delta_{\Gamma}^{-1} \sigma - i \mathbf{n} \times \nabla_{\Gamma} \Delta_{\Gamma}^{-1} \sigma \right) + \alpha \mathbf{m}_{H}.$$

 ∇_{Γ} is the surface gradient operator

 Δ_{Γ}^{-1} is the inverse of the surface Laplacian along Γ restricted to the class of *mean-zero functions*

 \mathbf{m}_H is a tangential harmonic vector field satisfying

$$\nabla_{\Gamma} \cdot \mathbf{m}_H = 0, \qquad \nabla_{\Gamma} \cdot \mathbf{n} \times \mathbf{m}_H = 0 \qquad \mathbf{n} \times \mathbf{m}_H = -i \mathbf{m}_H.$$

 α : complex number determined by B.C.

²C.L. Epstein, L. Greengard, and M. ONeil. "Debye Sources, Beltrami Fields, and a Complex Structure on Maxwell Fields", *Comm. Pure Appl. Math.* **68**(12):22372280, 2016

Integral equation for σ and α

▶ Applying $\mathbf{B} \cdot \mathbf{n} = 0$ and the flux condition leads to the following integral equations for σ and α :

$$\begin{split} &\frac{\sigma}{2} - \mathbf{n} \cdot \nabla \int_{\Gamma} \frac{e^{i\mu|\mathbf{x} - \mathbf{x}'|}}{4\pi|\mathbf{x} - \mathbf{x}'|} \sigma(\mathbf{x}') dS' \\ &+ i\mu \mathbf{n} \cdot \int_{\Gamma} \frac{e^{i\mu|\mathbf{x} - \mathbf{x}'|}}{4\pi|\mathbf{x} - \mathbf{x}'|} \mathbf{m} dS' + i\mathbf{n} \cdot \nabla \times \int_{\Gamma} \frac{e^{i\mu|\mathbf{x} - \mathbf{x}'|}}{4\pi|\mathbf{x} - \mathbf{x}'|} \mathbf{m} dS' = 0 \\ &\frac{1}{\mu} \int_{\partial S} \mathbf{B} \cdot d\mathbf{l} = \Phi^{tor} \end{split}$$

- ► Well-conditioned, second kind integral equation
- ► Similar formulation (with more terms) for toroidal *shells*

Numerics

- ► Use 16th order hybrid Gauss-trapezoidal rule to evaluate singular integrals
- ▶ Use Fourier spectral differentiation matrix to evaluate ∇_{Γ}
- ► Compute Δ_{Γ}^{-1} by solving

$$(\Delta_{\Gamma} + \int_{\Gamma} dS)\omega = f$$

Invertible equation, and ω satisfies $\Delta_{\Gamma}\omega = f$ and $\int_{\Gamma}\omega dS = 0$

- ► Major simplifications for axisymmetric equilibria:
 - 1. There is a closed form formula for the harmonic surface vector field \mathbf{m}_H
 - 2. High order accuracy achieved with few unknowns ⇒ dense linear algebra solvers fast

TESTING THE SOLVER: CONSTRUCTING EXACT TAYLOR STATES ³

► View Taylor state as Grad-Shafranov equilibrium

$$\Delta^*\psi = -\mu^2\psi \qquad \text{in }\Omega, \qquad \psi = 0 \ \ \text{on } \Gamma$$

 $\psi(r, z, c_1, c_2, c_3, c_4, c_5, c_6, \lambda) = \psi_0 + c_1\psi_1 + c_2\psi_2 + c_3\psi_3 + c_4\psi_4 + c_5\psi_5$

► A general solution is

$$\psi_0 = rJ_1(\mu r) , \ \psi_1 = rY_1(\mu r) , \ \psi_2 = rJ_1\left(\sqrt{\mu^2 - c_6^2}r\right)\cos(c_6 z)$$

$$\psi_3 = rY_1\left(\sqrt{\mu^2 - c_6^2}r\right)\cos(c_6 z) , \ \psi_4 = \cos\left(\mu\sqrt{r^2 + z^2}\right)$$

$$\psi_5 = \cos\left(\mu z\right)$$

- The toroidal flux is then given by $\Phi^{tor} = \mu \iint_{\Omega} \frac{\psi}{r} dr dz$
- For Taylor states with X-points, need 5 more terms and 5 more c_i

³A.J. Cerfon and M. O'Neil, "Exact axisymmetric Taylor states for shaped plasmas", *Phys. Plasmas* **21**, 064501 (2014)

TESTING THE SOLVER: CONSTRUCTING EXACT TAYLOR STATES

- ▶ Treat μ as unknown along with the 6 c_i
- $\,\blacktriangleright\,$ Solve for the unknowns by imposing 7 conditions on $\psi=0$ curve

$$\begin{cases} \psi(1+\epsilon,0,C) = 0 \\ \psi(1-\epsilon,0,C) = 0 \\ \psi(1-\delta\epsilon,-\kappa\epsilon,C) = 0 \\ \psi_r(1-\delta\epsilon,-\kappa\epsilon,C) = 0 \\ \psi_{zz}(1+\epsilon,0,C) + N_1\psi_r(1+\epsilon,0,C) = 0 \\ \psi_{zz}(1-\epsilon,0,C) + N_2\psi_r(1-\epsilon,0,C) = 0 \\ \psi_{rr}(1-\delta\epsilon,-\kappa\epsilon,C) + N_3\psi_z(1-\delta\epsilon,-\kappa\epsilon,C) = 0 \end{cases}$$

 N_1 , N_2 , N_3 : curvatures at three points $(1 + \epsilon, 0)$, $(1 - \epsilon, 0)$, $(1 - \delta\epsilon, \kappa\epsilon)$

COMPARISON WITH EXACT TAYLOR STATE

► Challenging very low aspect ratio, high elongation Taylor state:

$$\epsilon = 0.95, \kappa = 2, \delta = 0.3$$

 $\mu = 2.281569790667846$

RESULTS

N_b	$ \mathbf{B}_{ex} - \mathbf{B}_{num} _2$	$T_{\text{build}}(s)$	$T_{\text{solve}}(s)$
25	8.49E-03	1.4E-01	4.8E-05
50	7.74E-05	3.8E-01	1.2E-04
100	1.21E-07	1.3E+00	5.5E-04
200	3.67E-08	6.0E+00	3.5E-03

SUMMARY - FUTURE WORK

- ► A generalized Debye representation of the magnetic field is a natural formulation for magnetic fields in Taylor states
- ► The formulation leads to a well-conditioned integral equation of the second kind
- ► The associated numerical solver is high order accurate and has low memory requirements

► Future work:

- (Near term) More complete convergence tests for toroidal and toroidal shell regions
- ► (Longer term, though already ongoing): apply method to nonaxisymmetric Taylor states
 - Numerical computation of harmonic surface vector fields (Lise-Marie Imbert-Gérard)
 - 2. Implement fast direct solvers or FMM methods for dense linear system