
Parallelization of DEBS

Sherwood Conference 2016

B.S. Cornille and C.R. Sovinec

University of Wisconsin-Madison



There is motivation for parallelizing DEBS

Would like to reduce turn-around time for simulations.

Dr. Josh Reusch ran one simulation for about a year of real
time for his thesis to produce an ensemble of sawtooth events.

Would like to run simulations with greater resolution.

2 / 19



DEBS solves an MHD initial value problem

MHD Equations:

∂A

∂t
= v × B− ηJ

ρ
∂v

∂t
= −ρv · ∇v + J× B−∇P + ν∇2v

∂ρ

∂t
= −∇ · ρv

∂P

∂t
= −γP∇ · v − v · ∇P + (γ − 1)[∇ · K · ∇

(

P

ρ

)

+ Q]

B = ∇× A J =
1

µ0
∇× B

Assumed periodic cylinder geometry

(r , θ, z) with 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, and 0 ≤ z ≤ L = 2πR

3 / 19



DEBS uses a spectral representation for θ and z

DEBS geometry is periodic in θ and z , so a Fourier spectral
method is used in these coordinates.

Spectral methods have geometric convergence for smooth

functions.

Complex finite Fourier coefficients defined

fm,n(r) =
1

MN

M
∑

j=1

N
∑

k=1

f (r , θj , zk)e
i(mθj+n

zk
R
)

In a Fourier representation differential operations become
arithmetic.
(

∂f (r , θ, z)

∂θ

)

m,n

= −imfm,n(r)

(

∂f (r , θ, z)

∂z

)

m,n

= −i
n

R
fm,n(r)

4 / 19



DEBS utilizes a staggered mesh for finite differences in r

DEBS uses a staggered mesh in r

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

rp(i)

r(i)

ri+ 1
2

ri

Aθ, Az , Br , vr , Jθ, Jz , ρ, and P defined on ri

Ar , Bθ, Bz , vθ, vz , and Jr defined on ri+ 1
2

5 / 19



The curl operator motivates the use of a staggered mesh

The evaluation of example terms of the curl operator on the DEBS
mesh:

B = ∇× A

Bθ =
∂Ar

∂z
−

∂Az

∂r

∂Az

∂r

∣

∣

∣

∣

i+ 1
2

≈
Az ,i+1 − Az ,i

∆ri+ 1
2

Bθ,i+ 1
2
≈ −i

n

R
Ar ,i+ 1

2
−

Az ,i+1 − Az ,i

∆ri+ 1
2

J = ∇× B

Jθ =
∂Br

∂z
−

∂Bz

∂r

∂Bz

∂r

∣

∣

∣

∣

i

≈
Bz ,i+ 1

2
− Bz ,i− 1

2

∆ri

Jθ,i ≈ −i
n

R
Br ,i −

Bz ,i+ 1
2
− Bz ,i− 1

2

∆ri

6 / 19



Data dependencies motivate the domain decomposition

Radial derivatives from curl evaluation can be pictorially
represented:

i

i i+1 i

i-1 ior

7 / 19



DEBS uses a semi-implicit time advance

Explicit methods are subject to a Courant-Friedrichs-Lewy
(CFL) condition

∆t <
∆x

v

Fast MHD waves lead to too restrictive of time steps.

e.g. electrostatic, fast compressional, and shear Alfvén

Implicit methods produce unconditional numerical stability for
waves

No CFL restriction to time step
Expensive for nonlinear terms

Like implicit methods, semi-implicit methods are numerically
stable for very large time steps. However, semi-implicit
operators can be designed to not couple Fourier components.

8 / 19



How a semi-implicit time advance can be developed

A semi-implicit scheme is developed by subtracting a linear
term that is designed to mimic a the nonlinear term in the
equation from each side of a time advance

This term is treated once implicitly and once explicitly, e.g. 1

An+1+∆tη0∇×∇×An+1 = A∗∗−∆tη∇×∇×A∗∗+∆tη0∇×∇×A∗∗

Each semi-implicit time advance in DEBS only requires
inversion of a block-tridiagonal matrix for each Fourier
component.

In DEBS, waves are stabilized by the semi-implicit advance,
but there is still a much less restrictive CFL condition from
advection.

i.e. v · ∇v

1D. S. Harned and D. D. Schnack, “Semiimplicit method for long-time scale
magnetohydrodynamic computations in 3 dimensions”,
Journal of Computational Physics 65, 57 (1986)

9 / 19

http://dx.doi.org/10.1016/0021-9991(86)90004-5


Using the existing data structures, a radial mesh

decomposition was developed

Using the dependencies for derivative calculation, a general
communication scheme was designed:

1 2 3 4

1 2 3 4 5

rp(i)

r(i)

Processor 1

Processor 2

0

1 2 3 4 5

0 1 2 3 4
rp(i)

r(i)

10 / 19



How parallel performance is measured

Strong Scaling

Constant problem size;
increased computer
resources

Measured by speedup
S =

tseq
tP

or efficiency

E = S
P

Ideal case: efficiency of
one for all P

Weak Scaling

Problem size scales with
increases computer
resources

Ideal case: constant
execution time

11 / 19



Some definitions for performance testing of Parallel DEBS

Three inputs that set mesh size; nr, mt, and mz
nr is the array size in the radial direction for each processor

Global mesh size defined by nr tot=(nr−1)∗nprocs
nr tot also denoted Nr

nprocs also denoted P

Nθ = 2mt

Nz = 2mz

The high-performance computing (HPC) cluster of the
UW-Madison Center for High Throughput Computing (CHTC) was
used

Two Intel Xeon E5-2670v2 processors per node; total of 20
processor cores

128 GB RAM per node

Cluster connected by 56 Gbit/s Infiniband network

OpenMPI version 1.6.4 used to compile DEBS, ScaLAPACK,
and HDF5

ATLAS version of LAPACK and BLAS used
12 / 19



Strong scaling results

Two processors show speedup over serial DEBS, e.g. 17 min vs. 23
min, for equivalent problem sizes. Gains seen until about Nr

P
< 50.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Number of Processors

S
p
ee
d
u
p

Strong Scaling Speedup

 

 

Parallel Nr = 1000

Parallel Nr = 200

Serial Nr = 1000

Serial Nr = 200

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

Number of Processors

E
ffi
ci
en

cy

Strong Scaling Efficiency

 

 

Parallel Nr = 1000

Parallel Nr = 200

Serial Nr = 1000

Serial Nr = 200

13 / 19



Weak scaling results

10
0

10
1

10
2

100

200

300

400

500

600

700

800

900

1000

1100

Number of Processors

W
a
ll
C
lo
ck

T
im

e
(s
)

Weak Scaling Timings

Nr/P = 50
Nr/P = 100
Nr/P = 200
Nr/P = 500

All sequences used mt = 3 and mz = 5 and were advanced 1000
time steps.

14 / 19



A relatively simple relation demonstrates how latency and

bandwidth affect parallel banded-matrix solves

Total operation count of the ScaLAPACK routine used2

ϕ ≈ 2kl (4ku + 1)
n

p
+ (4kl + 4ku + 1)r

n

p

+

(

32

3
k3 + 9k2r + 6ts + 4k(k + r)tw

)

⌊log2(p − 1)⌋

p is the number of processors, n is the matrix size, r is the
number of right hand sides, kl is the number of lower matrix
bands, ku is the number of upper bands, and k = max(kl , ku)

ts is the start-up time, in terms of floating-point operations
(flops), of a single communication call, and tw is the time, in
flops, to transfer a word of data

2P. Arbenz et al., “A comparison of parallel solvers for diagonally dominant
and general narrow-banded linear systems”, Eidgenossische Technische
Hochschule, Department of Computer Science, Institute of Scientific
Computing (1998)

15 / 19



Parallel DEBS appears to be limited by latency

Reasonable estimates for ts and tw are ts ≈ 1000 and tw ≈ 10

Three matrix sizes solved in DEBS with kl = ku = k = 1, 3, 5
and n = Nr , 2Nr , 3Nr

Using kl = ku = k = 1, and n = Nr emphasizes the
communication terms the most, giving a simplified operation
count

ϕ ≈ 19
Nr

p
+ (20 + 6ts + 8tw )⌊log2(p − 1)⌋

This shows communication dominated operation count,
specifically ts , for

Nr

P
values studied

ts is different within a shared-memory node vs. over a network

Parallel DEBS calculations should mostly be on single pieces
of hardware

16 / 19



At modest Lundquist number numerical convergence

requires modest radial resolution

0.00 0.01 0.02 0.03 0.04 0.05

Time (τR)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
e
v
e
rs
a
l
P
a
ra
m
e
te
r

Convergence Study at S = 10
4

Nr = 25

Nr = 50

Nr = 100

Nr = 250

Nr = 500

17 / 19



At higher Lundquist number numerical convergence

requires substantial radial resolution

0.00 0.01 0.02 0.03 0.04 0.05

Time (τR)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

R
e
v
e
rs
a
l
P
a
ra
m
e
te
r

Convergence Study at S = 10
5

Nr = 100

Nr = 250

Nr = 500

Nr = 1000

18 / 19



Findings

Gains have been made in turnaround time and practically
available radial mesh sizes for DEBS simulations.

Parallel strong scaling is limited to Nr

P
' 50.

Parallel execution should mostly be done on share-memory
hardware.

The improved radial resolution made accessible by Parallel
DEBS will be especially important for high-Lundquist number
simulations.

The CFL condition for advection begins to become limiting at
very high radial resolution.

19 / 19


	Background
	DEBS Code
	Parallel Computing

	Parallelization
	Results
	Conclusion

