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There is motivation for parallelizing DEBS

@ Would like to reduce turn-around time for simulations.

@ Dr. Josh Reusch ran one simulation for about a year of real
time for his thesis to produce an ensemble of sawtooth events.

@ Would like to run simulations with greater resolution.



DEBS solves an MHD initial value problem

MHD Equations:
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DEBS uses a spectral representation for 6 and z

@ DEBS geometry is periodic in 6 and z, so a Fourier spectral
method is used in these coordinates.

@ Spectral methods have geometric convergence for smooth
functions.

@ Complex finite Fourier coefficients defined
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@ In a Fourier representation differential operations become
arithmetic.
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DEBS utilizes a staggered mesh for finite differences in r

@ DEBS uses a staggered mesh in r
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o Ay, Az, By, vr, Jy, Jz, p, and P defined on r;

e A,, By, By, vy, vy, and J, defined on iyl



The curl operator motivates the use of a staggered mesh

The evaluation of example terms of the curl operator on the DEBS

mesh:
B=VxA J=V xB
0A, O0A, 0B, 0B,
By = _ Jy — _
0 0z or 0 0z or
0A, ~ Az,i+1 - Az,i 0B, Bz,i—i—% - Bz,i—%
or |ip1 Aria or |; Ar;
.n Azit1— Az n B, i+: B, 1
By iv1 ™ _’ﬁAr,iJr% T An Joi = _iﬁBr,i - 2Ar- 2
2 1



Data dependencies motivate the domain decomposition

Radial derivatives from curl evaluation can be pictorially
represented:
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DEBS uses a semi-implicit time advance

@ Explicit methods are subject to a Courant-Friedrichs-Lewy

(CFL) condition
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@ Fast MHD waves lead to too restrictive of time steps.
o e.g. electrostatic, fast compressional, and shear Alfvén
@ Implicit methods produce unconditional numerical stability for
waves
@ No CFL restriction to time step
@ Expensive for nonlinear terms
@ Like implicit methods, semi-implicit methods are numerically
stable for very large time steps. However, semi-implicit
operators can be designed to not couple Fourier components.



How a semi-implicit time advance can be developed

@ A semi-implicit scheme is developed by subtracting a linear
term that is designed to mimic a the nonlinear term in the
equation from each side of a time advance

o This term is treated once implicitly and once explicitly, e.g. *
AL At VXV XA™ = A AtnV X Vx A+ AtV x Vx A**

@ Each semi-implicit time advance in DEBS only requires
inversion of a block-tridiagonal matrix for each Fourier
component.

o In DEBS, waves are stabilized by the semi-implicit advance,

but there is still a much less restrictive CFL condition from
advection.

o ie. v-Vv

1D, S. Harned and D. D. Schnack, “Semiimplicit method for long-time scale
magnetohydrodynamic computations in 3 dimensions”,
Journal of Computational Physics 65, 57 (1986)


http://dx.doi.org/10.1016/0021-9991(86)90004-5

Using the existing data structures, a radial mesh

decomposition was developed

Using the dependencies for derivative calculation, a general
communication scheme was designed:
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How parallel performance is measured

Strong Scaling Weak Scaling
@ Constant problem size; @ Problem size scales with
increased computer increases computer
resources resources
@ Measured by speedup @ Ideal case: constant
S= % or efficiency execution time
£~ 3

@ ldeal case: efficiency of
one for all P
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Some definitions for performance testing of Parallel DEBS

Three inputs that set mesh size; nr, mt, and mz
@ nr is the array size in the radial direction for each processor
s Global mesh size defined by nr_tot=(nr—1)%nprocs

@ nr_tot also denoted N,
@ nprocs also denoted P

o Ny=2mt
o N, =2mz
The high-performance computing (HPC) cluster of the
UW-Madison Center for High Throughput Computing (CHTC) was
used
@ Two Intel Xeon E5-2670v2 processors per node; total of 20
processor cores
o 128 GB RAM per node
@ Cluster connected by 56 Gbit/s Infiniband network
@ OpenMPI version 1.6.4 used to compile DEBS, ScaLAPACK,
and HDF5
@ ATLAS version of LAPACK and BLAS used
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Strong scaling results

Two processors show speedup over serial DEBS, e.g. 17 min vs. 23
min, for equivalent problem sizes. Gains seen until about % < 50.

Strong Scaling Speedup

Strong Scaling Efficiency

Efficiency
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Weak scaling results

Weak Scaling Timings
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All sequences used mt = 3 and mz = 5 and were advanced 1000
time steps.
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A relatively simple relation demonstrates how latency and

bandwidth affect parallel banded-matrix solves

Total operation count of the ScaLAPACK routine used?

n n
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32

+ <?k3 + 9Kk?r + 6ts + dk(k + r)tw> |log,(p —1)]

@ p is the number of processors, n is the matrix size, r is the
number of right hand sides, k; is the number of lower matrix
bands, k, is the number of upper bands, and k = max(k;, k,)

@ t, is the start-up time, in terms of floating-point operations
(flops), of a single communication call, and t,, is the time, in
flops, to transfer a word of data

2p. Arbenz et al., “A comparison of parallel solvers for diagonally dominant
and general narrow-banded linear systems”, Eidgenossische Technische
Hochschule, Department of Computer Science, Institute of Scientific
Computing (1998)
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Parallel DEBS appears to be limited by latency

@ Reasonable estimates for ts and t,, are ts ~ 1000 and t,, = 10

@ Three matrix sizes solved in DEBS with k; = k, = k=1,3,5
and n= N,,2N,, 3N,

@ Using kj = k, = k=1, and n = N, emphasizes the
communication terms the most, giving a simplified operation
count

Ny
0~ 19; + (20 + 6t5 + 8ty ) |loga(p — 1) ]

@ This shows communication dominated operation count,
specifically tg, for % values studied

@ t, is different within a shared-memory node vs. over a network

@ Parallel DEBS calculations should mostly be on single pieces
of hardware
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At modest Lundquist number numerical convergence

requires modest radial resolution

Reversal Parameter

Convergence Study at S = 10*
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At higher Lundquist number numerical convergence

requires substantial radial resolution

Convergence Study at S = 10°
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@ Gains have been made in turnaround time and practically
available radial mesh sizes for DEBS simulations.

o Parallel strong scaling is limited to % 2 50.
o Parallel execution should mostly be done on share-memory
hardware.

@ The improved radial resolution made accessible by Parallel
DEBS will be especially important for high-Lundquist number
simulations.

@ The CFL condition for advection begins to become limiting at
very high radial resolution.
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