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Theses 

•  The impact of sheared toroidal rotation on pressure driven 
magnetic island widths in tokamak plasmas is assessed 

 
•  Sheared flow enhances the stabilizing effect of favorable 

average-curvature and pressure gradient (Glasser term). No 
impact on NTM drive à  sheared flow tends to have a net 
reduction on pressure driven island in tokamaks 

•  The effect of the sheared flow is enhanced in toroidal plasmas 
over that predicted in cylindrical plasmas by a Pfirsch-Schlüter-
like correction ~ 1 + 2q2 
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Empirically, it’s known that sheared flow alters onset 
conditions for NTMs and the saturated island widths 

•  A variety of studies have shown sensitivity to flow shear physics 
 

Onset βN for NTMs increases   Saturated island width 
with toroidal flow shear    decreases with flow shear 

 
 

 
 

    
 dependence of Δ’? 3	


 LaHaye et al, PoP 056110 (2010), Buttery et al, PoP 056115 (2008),  
 Gerhardt et al, NF 49, 032003 (2009), … 
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Large number of studies have been dedicated to 
shear flow stabilization of tearing modes 

•  A number of mechanisms for shear flow to modify tearing 
modes: 

•  From Linear theory 
–  Modification of Δ’  --- generally stabilizing (Chen and 

Morrison, ‘90, Chandra et al ’05, Sen et al ‘13 …) 
–  Differential rotation between geometrically coupled rational 

surfaces, resonant field errors and/ or resistive walls --- 
generally stabilizing (Fitzpatrick ‘93, Chandra ‘07 …) 

•  Nonlinear physics 
–  Flow modifications to nonlinear island region currents --- 

polarization currents (Fitzpatrick and Waelbroeck ‘09), …  
–  Flow modifications pressure drives in island region 
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Toroidal MHD equilibria are considered with sheared 
toroidal flow 
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•  MHD equilibrium with sheared toroidal flow 

–  Grad-Shafranov with toroidal flow 

•  For this work, we will work in the weak flow, but strong 
flow shear regime 

•  Motivated by observations that flow shear is more 
important than flow in NTM physics 
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Sheared flow effects modify Mercier stability indices 
and asymptotic matching 

•  Asymptotic matching is determined by Mercier indices 

–  In the presence of shear flow, Mercier indices are modified. 
In the small γµοp/B2 << 1 limit (Chu, ‘98) 

•  E, F, H = conventional measure of interchange stability 
(Glasser et al PF ‘75) 

•  Sheared flow measured by MA 
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Nonlinear island dynamics are considered using a 
Rutherford theory-like approach 
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•  Flux surfaces labeled by helical flux Ψ* 
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Nonlinear neoclassical-MHD equations employed 

•  Island Grad-Shafranov-like equation determined from ideal MHD 

–  Rutherford-style matched asymptotic solutions 
•  J||/B in the island region calculated self-consistently with 

flow modified profiles 
•  Asymptotic matching to exterior data 
•  Small island approximation 

–  Arbitrary p’, axisymmetric shaping 
–  Small beta approximation when the going gets tough 
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Properties of flow and pressure profiles deduced 
from leading order equations 

From lowest order Ohm’s law, pressure equation and parallel 
momentum balance, pressure and flow profiles satisfy: 

  

•  Equilibration of pressure and electrostatic potential on 
helical flux surfaces, Pfirsch-Schlüter plasma flows 

–   λ = Pfirsch-Schlüter coefficient 
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Quasineutrality condition predicts helical Pfirsch-
Schlüter and polarization currents 

•  Quasineutrality condition 

–  Parallel current profile has a number of terms 

•  Flow profile factor augmented in toroidal geometry by the 
quantity M  à M ~ 1 + 2q2 in large aspect ratio limit 
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Ampere’s law used to derive self-consistency 
relation 

11	


•  Island Grad-Shafranov expression derived from Ampere’s law 

–  Dimensionless profile function Ma denotes normalized island 
flow profile 

•  Profile function asymptotes to MA at large |x| 
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Island Grad-Shafranov Equation determined to  
within three free functions of Ψ* 

•  Three profile functions required: 
–  p(Ψ*) --- pressure 
–  Ma(Ψ*) --- flow 
–  F(Ψ*) --- current 

•  Profile functions constrained by transport physics 
–  Pressure determined by constancy of net pressure flux and 

Fick’s law form  
–  Flow profile determined from no net cross-field radial current 

and Fick’s law form for viscous stress 
•  Ma(Ψ*) = MA 

–  Current profile --- resistive-neoclassical Ohm’s law 
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Neoclassical Ohm’s law allows for the inclusion of 
bootstrap current contributions 
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•  Neoclassical Ohm’s law 

•  Provides transport constraint for current profile 

 
 
–  Resistive interchange contributions  
–  Polarization effects 
–  Bootstrap current drive  ~  NTM drive 
–  Inductive electric field ~  (dw/dt) 
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Island Grad-Shafranov equation is to be matched 
asymptotically to exterior region 

•   Asymptotics of island region solution 
–  At large |x|, inner layer solution 

–  Matching to exterior region 
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Modified Rutherford equation is derived that 
includes effect of sheared flow on pressure drives 
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•  Modified Rutherford equation 

–  Flow shear amplifies the stabilizing effect of good averaged 
curvature -- generally  (E + F + H2) < 0 in tokamak equilibria 

–  Modifies Δ’ contribution 

 (wsat)1-2α  = k1(DNC + DRMA)/(-Δ’(-4DIMA)0.5) 
 

k0
µo

ηnc

dw
dt

= w−2αlΔ* +
k1
w
(Dnc +DRMA

)

Δ*= Δ '22αl −4DIMA

Dnc = −
µe

µe +νe

µo po
' qo

qo
'

R2 < B2 / gψψ >
< B2 >

DRMA
=
E +F +H 2 +MA

2 (H −H 2 )
(1−MA

2 )(αs −H )

NTM drive --- 
destabilizing in tokamaks 
 
Resistive interchange 
contribution --- generally 
stabilizing 
 
 



Hegna, Sherwood, 4/2/16	

University of Wisconsin-Madison	


Sheared flow produces modest corrections to 
saturated island width  
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Conclusions 

•  The effects of sheared toroidal flow are included in calculations 
of saturated pressure driven magnetic islands using a 
neoclassical-resistive MHD model. 

•  Sheared toroidal flow enhances the stabilizing effects of 
favorable pressure gradient/average curvature by the factor ~   
1/(1 – MA

2) 
•  The effect of sheared flow is enhanced over that predicted in 

cylindrical theory by a factor of order 1 + 2q2 due to a Pfirsch-
Schlüter-like correction 

•  The sheared flow correction should also enhance ion 
polarization currents responses as well --- an effect to be 
addressed in future work. 
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