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‘ Abstract |

The Lagrangian, Eulerian, and Euler-Poincaré variational
principles for the guiding-center Vlasov-Maxwell equations
are presented. Each variational principle presents a dif-
ferent approach to deriving guiding-center polarization and
magnetization effects. The conservation laws of energy and
momentum are also derived by Noether method, where the
symmetric stress tensor is now shown explicitly.

* This work is supported by the Leverhulme Trust and the London Math-
ematical Society (CT), and by the U.S. Department of Energy (AJB).

‘ 1. Guiding-center (GC) theory & Maxwell equations |

e Over the decades, the variational formulation has been
most successful in capturing nonlinear GC effects, as
they arise from Hamiltonian perturbation theory.

e Following Littlejohn’s phase-space Lagrangian for GC
motion, the variational approach was exploited in [1] to
establish a self-consistent GC-Maxwell theory.

e Although GC-Maxwell coupling also appears in recent
studies, the explicit terms in Ampere’s law have not been
considered in terms of energy/momentum balance.

e For example, the total magnetization
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carries a moving-dipole correction, whose role has of-
ten been overlooked, e.g. in hybrid MHD models [2].

‘ 2. Three different variational principles |

e In [3], we approach GC-Maxwell coupling by presenting
the corresponding Vlasov kinetic theory, as it emerges
from three different variational principles (VP’s):

1. Lagrangian: in terms of Lagrangian paths;
2. Eulerian: extended Eulerian coordinates;
3. Euler-Poincareé: relabeling transformations.

e The magnetic moment invariant and the ignorable gy-
rophase coordinate are eliminated to express the Vlasov
density F,(X, pH) on the reduced (4D) phase-space

e Unlike previous studies, no £ x B comoving frame is in-
troduced, so polarization effects do not appear explicitly.

‘ 3. The Lagrangian variational principle |

e Following the works by Low and Sugama, we introduce
the phase-space VP in terms of Lagrangian paths:

2(tizo, 1) = (X(t;20, 1), p) (L5 20, 1)),

parameterized by the magnetic moment invariant L.

e In CGS units, the corresponding Lagrangian action reads
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e Taking variations 6z“ yields
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Notice the GC dipole moment contribution (m/B)b x X.
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‘ 4. Eulerian VP on the extended phase-space |

e In [4], an Eulerian VP was formulated for the Maxwell-
Vlasov system. This is now extended to GC-Maxwell.

e One extends the GC phase space by including the con-
jugate coordinates (¢, w), where w is the particle energy.
In this extended phase-space, the Eulerian VP reads
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where F,, depends on the coordinates Z¢ = (X, p|[- T, Ww; 1).

e The noncanonical structure of GC dynamics leads to the
first two terms in the variations ¢.F,,, which are written as

m:ZéA*-( X fﬂ/BH} >

* *

Here, 0S5 is arbitrary and we use the Poisson bracket
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as well as the notation V*F = VF — (e/c)0;A* 0y F.

e Stationarity with respect to 4S yields B {]:u / BH , H}oc = 0.
Then, upon integrating over w, replacmg the ansatz

leads to the Vlasov equation in the form

a9t ac dt

ot aca ) =0 with {* = (X, pH).

e Variations with respect to (69,0A) yield Gauss’ and
Ampere’s laws in the Eulerian form
V-E=A4r /Fludp| d,u

VXB—lg—E—KLﬂ(VXMgCJrE
cO C

‘ 5. Euler-Poincare VP and relabeling transformations |

e The action A%, can be rewritten in terms of Eulerian vari-
ables by the same process as in inviscid fluid dynamics.
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e This process is known as Euler-Poincaré reduction by
symmetry and it has been successfully applied to various
contexts, including plasma kinetic theories [5].

e As the Lagrangian paths z%(t,zg; 1) are smooth and in-
vertible, they are regarded as u—dependent relabeling
transformations taking the label z( to its current position.

e Upon defining the Lagrange-to-Euler map (push-forward)
Fu(X,p) = /Fo(zo;u) 5(¢" — 2%(t,z0; 1)) d 2

the Lagrangian action A . 1S rewritten in the Eulerian form
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e Here, one defines the vector field

=(¢,1) = (UG, 96 1)

such that 2% = =%z, t). Then, one finds
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where T is arbitrary and vanishes at the endpoints.

e Taking the variations (02, 6F),) in A} yields
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along with the Vlasov equation
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e Again, variations with respect to (69,0A) yield Gauss’
and Ampere’s laws in the Eulerian form.

‘ 6. Noether conservation laws |

e The symmetry properties of Hamilton’s VP lead to con-
servation laws, according to Noether’s theorem.

e The time-reversal symmetry of the action AgEC yields en-
ergy conservation 9;£ + V - S, = 0 with the definitions
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e Analogously, the translational symmetry of the action Agc
yields the momentum balance 0;Py.+V - Ty = 0, where
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e Also, symmetry under rotations around the vertical axis
yields conservation of the toroidal angular momentum:
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e Finally, the Lagrangian action Aéc IS invariant under rela-
beling transformations that preserve the reference den-
sity Fy(zo; 1). Then the symplectic form is conserved
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for any surface o ¢ R* moving with the flow 2%(t, zo; ).

e As a consequence, the Liouville density is conserved:
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7. Summary |

e Three different variational principles were presented for
the GC Vlasov-Maxwell system.

e The symmetry properties of the actions were used to pro-
duce explicit conservation laws for energy & momentum

e The moving dipole contribution in the magnetization is
determinant to ensure energy and momentum balance.

e The energy flux was presented along with the stress ten-
sor, which was found to be symmetric (as often assumed).
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