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Abstract

The Lagrangian, Eulerian, and Euler-Poincaré variational
principles for the guiding-center Vlasov-Maxwell equations
are presented. Each variational principle presents a dif-
ferent approach to deriving guiding-center polarization and
magnetization effects. The conservation laws of energy and
momentum are also derived by Noether method, where the
symmetric stress tensor is now shown explicitly.
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1. Guiding-center (GC) theory & Maxwell equations

•Over the decades, the variational formulation has been
most successful in capturing nonlinear GC effects, as
they arise from Hamiltonian perturbation theory.

• Following Littlejohn’s phase-space Lagrangian for GC
motion, the variational approach was exploited in [1] to
establish a self-consistent GC-Maxwell theory.

• Although GC-Maxwell coupling also appears in recent
studies, the explicit terms in Ampère’s law have not been
considered in terms of energy/momentum balance.

• For example, the total magnetization

Mgc(X, t) ≡ −
∫ [

µb̂ +
p‖
B

b̂×
(
b̂× dgcX

dt

)]
Fµ dp‖ dµ,

carries a moving-dipole correction, whose role has of-
ten been overlooked, e.g. in hybrid MHD models [2].

2. Three different variational principles

• In [3], we approach GC-Maxwell coupling by presenting
the corresponding Vlasov kinetic theory, as it emerges
from three different variational principles (VP’s):
1. Lagrangian: in terms of Lagrangian paths;
2. Eulerian: extended Eulerian coordinates;
3. Euler-Poincaré: relabeling transformations.

• The magnetic moment invariant and the ignorable gy-
rophase coordinate are eliminated to express the Vlasov
density Fµ(X, p‖) on the reduced (4D) phase-space

•Unlike previous studies, no E × B comoving frame is in-
troduced, so polarization effects do not appear explicitly.

3. The Lagrangian variational principle

• Following the works by Low and Sugama, we introduce
the phase-space VP in terms of Lagrangian paths:

za(t; z0, µ) ≡
(
X(t; z0, µ), p‖(t; z0, µ)

)
,

parameterized by the magnetic moment invariant µ.

• In CGS units, the corresponding Lagrangian action reads

AL
gc =

∫ t2

t1

{∫
F0(z0, µ)

[
e

c
A∗ · Ẋ−

( p2
‖

2m
+ eΦ∗

)]
d4z0 dµ

+

∫
d3x

8π

(
|E|2 − |B|2

)}
dt

with B = ∇×A and E = −∇Φ− c−1∂tA, as well as

eΦ∗ = eΦ + µB , eA∗ = eA + c p‖b̂ .

• Taking variations δza yields

E∗ +
e

c
Ẋ×B∗ = ṗ‖ b̂ , b̂ · Ẋ =

p‖
m

while taking variations (δA, δΦ) returns

∇ ·E = 4π

∫
F0 δ(x−X) d4z0 dµ

∇×B− 1

c

∂E

∂t
= 4π

{
e

c

∫
Ẋ F0 δ(x−X) d4z0 dµ

− ∇×
∫ [

µb̂ +
p‖
B

b̂×
(
b̂× Ẋ

)]
F0 δ(x−X) d4z0 dµ

}
.

Notice the GC dipole moment contribution (m/B) b̂× Ẋ.

4. Eulerian VP on the extended phase-space

• In [4], an Eulerian VP was formulated for the Maxwell-
Vlasov system. This is now extended to GC-Maxwell.

•One extends the GC phase space by including the con-
jugate coordinates (t, w), where w is the particle energy.
In this extended phase-space, the Eulerian VP reads

AE
gc =

∫
d3x dt

8π

(
|E|2 − |B|2

)
+

∫
Fµ
[(

1

2m
p2
‖ + eΦ∗

)
− w

]
d6Z dµ ,

whereFµ depends on the coordinates Zα = (X, p‖, t, w;µ).

• The noncanonical structure of GC dynamics leads to the
first two terms in the variations δFµ, which are written as

δFµ =
e

c
δA∗ ·

(
B∗‖

{
X, Fµ/B∗‖

}
gc

)
+ δB∗‖ Fµ/B

∗
‖ + B∗‖

{
δS, Fµ/B∗‖

}
gc
.

Here, δS is arbitrary and we use the Poisson bracket

{F , G}gc =
B∗

B∗‖
·
(
∇∗F ∂G

∂p‖
− ∂F
∂p‖
∇∗G

)
− c b̂

eB∗‖
·∇∗F×∇∗G

+

(
∂F
∂w

∂G
∂t
− ∂F

∂t

∂G
∂w

)
as well as the notation ∇∗F = ∇F − (e/c)∂tA

∗∂wF .

• Stationarity with respect to δS yieldsB∗‖{Fµ/B
∗
‖,H}gc = 0.

Then, upon integrating over w, replacing the ansatz

Fµ ≡ Fµ(X, p‖, t) δ(w −Hgc),

leads to the Vlasov equation in the form

∂Fµ
∂t

+
∂

∂ζa

(
Fµ

dgcζ
a

dt

)
= 0 with ζa = (X, p‖) .

• Variations with respect to (δΦ, δA) yield Gauss’ and
Ampère’s laws in the Eulerian form

∇ ·E = 4π

∫
Fµ dp‖ dµ

∇×B− 1

c

∂E

∂t
= 4π

(
∇×Mgc +

e

c

∫
dgcX

dt
Fµ dp‖ dµ

)
.

5. Euler-Poincaré VP and relabeling transformations

• The action AL
gc can be rewritten in terms of Eulerian vari-

ables by the same process as in inviscid fluid dynamics.

• This process is known as Euler-Poincaré reduction by
symmetry and it has been successfully applied to various
contexts, including plasma kinetic theories [5].

• As the Lagrangian paths za(t, z0;µ) are smooth and in-
vertible, they are regarded as µ−dependent relabeling
transformations taking the label z0 to its current position.

•Upon defining the Lagrange-to-Euler map (push-forward)

Fµ(X, p‖) =

∫
F0(z0;µ) δ(ζa − za(t, z0;µ)) d4z0

the Lagrangian actionAL
gc is rewritten in the Eulerian form

AEP
gc =

∫ t2

t1

[ ∫
Fµ(ζ)

(
e

c
A∗ ·U(ζ)−

p2
‖

2m
− eΦ∗

)
d4ζ dµ

+

∫ (
|E(x)|2 − |B(x)|2

) d3x

8π

]
dt,

•Here, one defines the vector field

Ξ(ζ, t) =
(
U(ζ, t), φ‖(ζ, t)

)
,

such that ża = Ξa(z, t). Then, one finds

δΞ =
∂Υ

∂t
+ Υa

∂Ξ

∂ζa
− Ξa

∂Υ

∂ζa
, δFµ = − ∂

∂ζa
(
ΥaFµ

)
,

where Υ is arbitrary and vanishes at the endpoints.

• Taking the variations (δΞ, δFµ) in AEP
gc yields

U =
dgcX

dt
=

1

B∗‖

(
p‖
m

B∗ + cE∗ × b̂

)
φ‖ =

dgc p‖
dt

=
e

B∗‖
E∗ ·B∗,

along with the Vlasov equation

∂Fµ
∂t

+
∂

∂Xi
(
U iFµ

)
+

∂

∂p‖

(
φ‖Fµ

)
= 0 .

• Again, variations with respect to (δΦ, δA) yield Gauss’
and Ampère’s laws in the Eulerian form.

6. Noether conservation laws

• The symmetry properties of Hamilton’s VP lead to con-
servation laws, according to Noether’s theorem.

• The time-reversal symmetry of the action AE
gc yields en-

ergy conservation ∂tE +∇ · Sgc = 0 with the definitions

Egc ≡
∫
Fµ

(
1

2m
p2
‖ + µB

)
dp‖dµ +

1

8π

(
|E|2 + |B|2

)
,

Sgc ≡
∫
Fµ

(
1

2m
p2
‖ + µB

)
dgcX

dt
dp‖dµ +

c

4π
E×H.

• Analogously, the translational symmetry of the action AE
gc

yields the momentum balance ∂tPgc+∇ ·Tgc = 0, where

Pgc =

∫
p‖ b̂ Fµ dp‖dµ +

E×B

4π c

Tgc =
1

8π

(
|E|2 + |B|2

)
− 1

4π

(
EE + BB

)
+

∫ {
p‖

[
b̂⊗s

(
dgcX

dt

)
⊥

]
+

[
1

m
p2
‖ b̂ b̂ + µB

(
I− b̂b̂

)]}
Fµ dp‖dµ.

Here, we have introduced the notation v⊗sw = vw+wv.

• Also, symmetry under rotations around the vertical axis
yields conservation of the toroidal angular momentum:

∂

∂t

(∫
FµPϕ dp‖dµ

)
+∇ ·

(∫
dgcX

dt
FµPϕ dp‖dµ

)
= 0

• Finally, the Lagrangian action AL
gc is invariant under rela-

beling transformations that preserve the reference den-
sity F0(z0;µ). Then the symplectic form is conserved

d

dt

∫∫
σ(t;µ)

dX ∧ dP = 0 , with P =
e

c
A(X, t) + p‖b̂(X, t)

for any surface σ ⊂ R4 moving with the flow za(t, z0;µ).

• As a consequence, the Liouville density is conserved:

d

dt

(
mB∗‖(X) d3X dp‖

)
= 0

7. Summary

• Three different variational principles were presented for
the GC Vlasov-Maxwell system.

• The symmetry properties of the actions were used to pro-
duce explicit conservation laws for energy & momentum

• The moving dipole contribution in the magnetization is
determinant to ensure energy and momentum balance.

• The energy flux was presented along with the stress ten-
sor, which was found to be symmetric (as often assumed).
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