Role of Inertial and Inductive Modes in Magnetic Reconnection Events

B. Coppi, B. Basu, and P.Montag — MIT

Recently, an accurate analysis of the database of magnetic island rotation with the JET machine [1] has revealed that, in the frame of zero radial electric field, the island rotation frequency is about $0.9\omega_{di}$, where ω_{di} is the ion diamagnetic frequency. The drift-tearing mode theory of reconnection in low collisionality regimes predicts a phase velocity in the opposite direction [2] and, under strictly collisionless conditions, stability in the presence of electron temperature gradients [3]. To explain the observations, a "mode inductivity" $\mathcal{L}_{\parallel} \equiv (4\pi/c^2)S_L$ has been introduced [4] whose effects replace those of finite resistivity. This has lead to a linear instability [5] with ω close to ω_{di} . The reconnection layer thickness is proportional to the inductivity [4] and the mode has a dissipative growth rate. When considering plasmas with ultrarelativistic energies, the inertial skin depth c/ω_{pe} becomes significant. However, if c^2/ω_{pe}^2 is the only contribution to S_L , the class of reconnecting modes that must be considered are those close to ideal MHD marginal stability [6]. In this case the width of the reconnection layer is of the order of the inertial skin depth and can be considered as relevant to realistic theories.

References

- P. Buratti *et al.*, 2014 "Magnetic islands rotation in JET", 41st EPS Conference on Plasma Physics (Berlin 2014) ECA vol. 38F, paper P1.014.
- [2] B. Coppi, *Phys. Fluids* 8, (1965) 2273.
- [3] B. Coppi, L. Sugiyama, et al., Ann. Phys. 119, (1979) 370.
- [4] B. Coppi, Bull. Am. Phys. Soc. 45, (2000) 366.
- [5] B. Coppi, B. Basu, P. Montag, L. Sugiyama, T. Zhou, and P. Buratti, Paper presented at the 2014 IAEA Int. Fus. En. Conf. (St. Petersburg, 2014) TH-P7/10; submitted to Nucl. Fusion.
- [6] B. Coppi, R. Galvao, R. Pellat, M. Rosenbluth, and P. Rutherford, *Fiz. Plazmy* 2, (1976) 961 [Sov. J. Plasma Phys. 2, (1976) 533].