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Abstract

Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal

fusion research discharges. In a fusion device a magnetic island saturates at a width which produces

a minimum in the magnetic energy of the configuration. At saturation the modified current density

profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the

difference in the current at the O-point and the X-point. Further modification of the current

density profile in the island interior causes a change in the island stability and additional growth

or contraction of the saturated island. Because field lines in an island are isolated from the outside

plasma an island can heat or cool preferentially depending on the balance of Ohmic heating and

radiation loss in the interior, changing the resistivity and hence the current in the island. A model

of island destabilization due to radiation cooling of the island is constructed, and the effect of

modification of the current within an island is calculated. An additional destabilization effect

is described, and it is shown that a small imbalance of heating can lead to exponential growth

of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and

because the radiation is proportional to plasma density and charge, this effect can cause an impurity

dependent density limit.

PACS numbers: 52.25.Fi, 52.25.Gj
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I. INTRODUCTION

Magnetic islands in fusion devices are practically never in a state of linear growth. At

very small width the linear analysis is no longer correct, and the island evolves through

states of stable saturation depending on varying equilibrium parameters and local current

density changes. Because of this the magnetic field configuration can be followed on a slow

time scale. At saturation the modified current density profile, a function of the perturbed

helical flux, is essentially flat in the island. Further modification of the current density profile

in the island interior by current drive, bootstrap current, or other effects causes additional

growth or shrinking of the saturated island. Because the island is to some degree thermically

isolated from the outside plasma, with heat flowing primarily past the island in the vicinity

of the X-point[1], heat from the plasma center does not easily penetrate the island and an

island can heat or cool preferentially depending on the internal balance of Ohmic heating

and radiation loss. The modified temperature changes the internal current magnitude and

the saturated island width. Cooling, and thus an increase in the resistivity and a decrease

in the current in the island interior is destabilizing, and heating is stabilizing[2]. This effect

has been hypothesized as being responsible for the Greenwald limit on plasma density in

tokamaks[3–7].

In section II we review the local analysis of island formation and saturation. In section

III island destabilization due to current perturbation is constructed, including an additional

destabilizing term due to island asymmetry[8]. In section IV the temperature inside the

island is calculated due to a balance of Ohmic heating and radiation loss, and it is shown

that heating causes island saturation at a small width, but heat loss due to radiation can

cause exponential growth. We show that the dominant equilibrium parameter determining

the saturated width of a magnetic island is in fact the internal island temperature. In section

V we examine a method of constructing, for the purposes of island saturation and evolution,

a cylindrical equilibrium approximating any given equilibrium of arbitrary aspect ratio or

shape. In section VI are the conclusions.

We use a large aspect ratio approximation, with a simple circular equilibrium. Use

cylindrical geometry r, θ with a conducting wall at the minor radius r = 1. Model profiles[9]
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are given by the form of the current density profile

j(r) =
j(0)

[(1 + (r/r0)2ν ]1+1/ν
, (1)

with the associated field helicity given by

q(r) = q(0)[(1 + (r/r0)
2ν ]1/ν , (2)

and also j(0) = 2/q(0) and

q(r) =
r2

∫ r

0
j(r)rdr

. (3)

The constant r0 gives the width of the current channel and profiles with ν = 1, 2, 4 are

refered to as peaked, rounded, and broad. In section V we will generalize the treatment to

arbitrary equilibria taken from either experimental data or fully toroidal simulations.

With the magnetic field normalized to 1 at the magnetic axis r = 0, and constant

across the plasma cross section, the toroidal flux is ψt = r2/2, and the poloidal flux is

ψp =
∫

drr/q(r). The helical flux associated with a single mode with toroidal and poloidal

harmonics given by n,m is given by ψ = ψp − (n/m)r2/2.

Introduce a single magnetic island with m ≥ 2 caused by a perturbation of the helical

flux given by[10, 11]

ψ(r, θ) = ψ0(r) + ψ1(r)cos(mθ), (4)

and similarly for the current density. The current density profile is related to the helical flux

through j = ∇2
⊥ψ + 2n/m + δj, where δj is a modification of the current in the island due

to applied localized current or modification of the plasma resistivity in the island interior,

and ∇2
⊥ψ1 = ψ′′

1 + ψ′
1/r − m2ψ1/r

2. An example of the unperturbed helical flux is shown

in Fig. 1, with vanishing derivative at the rational surface q(rs) = m/n. When the island

width is larger than the tearing layer the inertia is negligible[12] and the current density is

a function of the perturbed flux, j = j(ψ). The solution to the perturbed flux outside the

island is then given to lowest order in the magnitude of ψ1 by

∇2

⊥ψ1 =
dj

dψ0

ψ1 + δj1. (5)

Since this equation has a regular singular point at r = rs it must be integrated using

boundary conditions at r = 0, where ψ1 ∼ rm and at the conducting boundary r = 1, where
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FIG. 1: Equilibrium helical flux.

ψ1 = 0, and matched at r = rs, where the derivatives are singular. The modification due to

an additional current density within the island δj can be treated perturbatively.

Analysis of a general situation is accomplished by numerical integration using a fourth

order Runge Kutta scheme. In Fig. 2 is shown the perturbed flux and its derivative for a

fairly peaked current profile, r0 = 0.548, ν = 1.53053, q(0) = 0.9, rs = 0.7288. This profile is

chosen to approximately match conditions prior to a density limit disruption[4], and we will

refer to it as the disruption test case. It is slightly above the m = 2 tearing mode instability

threshold. Simulations with a fully time dependent code including heat transport[13] were

carried out with a slightly different equilibrium because of the need to avoid the q = 1

surface. Comparison with those simulations is discussed in section V.

The perturbed flux ψ1(r) is integrated from the boundaries at r = 0, 1 up to near the

rational surface rs so subtracting the limiting values of ψ′
1 for r → rs+ from that for

r → rs− gives the value of ∆′ for the linear mode. For purposes of plotting these results we

normalize the perturbed flux ψ1(r) to 1 at the rational surface. An actual mode in a device

has amplitude α typically smaller than 10−3.
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FIG. 2: The perturbed helical flux ψ1(r), and the derivative ψ′
1(r).

II. LOCAL ANALYSIS

Let r = rs + x. Near the rational surface, expanding ψ = ψ0(r) + ψ1(r)cos(mθ) about

the rational surface and mθ = ±π we have

ψ(r, θ) ≃ ψ0(rs) + ψ′′
0(0)

x2

2
+ ψ1(rs)

(

−1 +
dθ2

2

)

(6)

and since ψ′′
0(0) < 0 this equation is hyperbolic with an X-point at x = dθ = 0 and the

separatrix value of ψ is ψs = ψ0(rs) − ψ1(rs). The elliptic point is at x = 0 and mθ = 0.

We also have ψ0 ≃ ψ′′
0(0)x2/2 and ∇2

⊥ψ1 ≃ ψ′′
1 so Eq. 5 without a current perturbation

becomes ψ′′
1 = kψ1/x with k = (dj/dx)/ψ′′

0 . The asymptotic solution for small x with δj = 0

is, including the first three terms

ψ1 = ψ1(0)[1 − Ax+ kxln(−x)], x < 0

ψ1 = ψ1(0)[1 −Bx+ kxln(x)], x > 0. (7)

Boundary conditions at r = 0 and r = 1 and the matching of these two functions

determines ψ1(r) within overall normalization. The constants A, B (normally positive) are

determined by integrating Eq. 5 using the boundary conditions at r = 0, 1. Note that

because of the logarithms the derivatives are singular at the rational surface.
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We then have also to this order

ψ′
1 = −ψ1(0)A+ ψ1(0)kln(−x) + ψ1(0)k, x < 0

ψ′
1 = −ψ1(0)B + ψ1(0)kln(x) + ψ1(0)k, x > 0 (8)

and ψ′′
1 = ψ1(0)k/x. Linear theory is obtained by matching these external solutions to

solutions inside the resistive layer, which is considered infinitesimally thin. When the island

becomes larger than the width of the resistive layer the solution is modified within the island

and the matching must be done using the edges of the island rl and rr.

Growth is then given by ∆′(w) for width w with

∆′(w) =
ψ′

1(xr) − ψ′
1(xl)

ψ1(0)
≃ A−B + k[ln(xr) − ln(−xl)] (9)

with subscripts r and l referring to the right and left edges of the island at the maximum

width, θ = 0, and w = rr − rl is the island width. ∆′(w) describes the instantaneous growth

rate and the magnetic energy of the island configuration, with ∆′(w) = 0 at the magnetic

energy minimum, the saturated state[10].

Again approximating the island width as narrow we have δjφ ≃ ψ′′
1 , and approximating

ψ′′
1 = (ψ′

1(xr) − ψ′
1(xl))/w, gives for the current due to the island perturbation

j1(r, θ) =
∆′ψ1

w
cos(mθ) (10)

relating the current magnitude within the island to the stability.

The position of the island separatrix is determined by setting ψ to the value at the

separatrix, given by the X-point, at mθ = π and approximately at x = 0, ψs = ψ0(0)−ψ1(0).

The edges xl and xr at θ = 0 are determined by setting ψ(r, 0) = ψs. Ordering terms in

magnitude of ψ1, the leading order gives

xr = −xl =

(

−4ψ1(0)

ψ′′
0

)1/2

(11)

so to this order the island is symmetric about the rational surface and the growth rate is

given by

∆′(w) = A−B. (12)

But as we will see, the island asymmetry is important, and local approximations not taking

account of higher order terms give incorrect results.
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FIG. 3: Shift of X and O-points vs mode amplitude, with amplitudes of 10−6 (a), 5 × 10−5 (b),

and 10−4 (c). The right zero corresponds to the location of the X-point, and the left zero that of

the O-point.

O-point and X-point locations are at the local maxima in r of ψ0(r) + ψ1(r)cos(mθ), at

r > rs for the X-point cos(mθ) = −1 and at r < rs for the O-point cos(mθ) = 1. The local

expressions give for r < rs

dψ/dr = ψ′′
0x

2/2 + α(A− kln(−x) − k) (13)

and for r > rs

dψ/dr = ψ′′
0x

2/2 − α(−B + kln(x) + k) (14)

Solutions for dψ/dr = 0 are shown in Fig. 3 for α = 10−6 (a), 5 × 10−5 (b), and 10−4 (c).

Values of A and B were determined by a numerical integration of ψ1. The O-point shift from

x = 0 is generally larger than the X-point shift. This island asymmetry, due to the fact that

ψ1 is not constant across the island, was used in the analysis of tearing mode saturation[10].
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III. CURRENT PERTURBATION

Now consider the effect on the island of current modifications within the island. The

perturbed current density harmonic is given in the range rl < r < rr by

δj1(r) =
1

π

∫

2π

0

dθcos(mθ)jI(ψ) (15)

and jI(ψ) is a helically symmetric function of the island interior flux.

Using local expressions and taking flux surface averages at the hyperbolic and elliptic

points[11] gives for the change in the growth rate of an island of width w due to perturbations

of current δj1 of

dψ1

dt
=
η(rx)∆

′(w)ψ1

w
− η(rx)δj1 (16)

This equation involving islands with width larger than the tearing layer is known as the gen-

eralized Rutherford equation, first introduced in the analysis of tearing mode saturation[10].

The effect of the current perturbation is commonly expressed as a modification of ∆′ by the

addition of ∆′
δj with

∆′
δj(w) = −wδj1

ψ1

, (17)

and used for neoclassical bootstrap calculations and other effects[14–16]. Note that it is

singular at zero island width.

Because of the island asymmetry A = (rr−rx)/(rx−rl)−1, with rx the X point location,

there is a destabilizing effect producing a δj. In the island the flattening of the temperature

profile and the resistivity leads to a flattening of the current profile, producing a perturbed

negative current (destabilizing) for r < rx and a positive current perturbation (stabilizing)

for r > rx. Since temperature is equilibrated along the separatrix, and unless there is an

imbalance between Ohmic heating and radiation loss it is constant across the island, the

value of η and the magnitude of the current in the island are given by values at the X-point,

so in the island j = j(rx). The effect of the asymmetry was noted in[17] with regard to the

supression of the neoclassical tearing mode.

The modified current profile for large islands is shown schematically in black in Fig. 4.

Aside from the fact that the heat flows through the X-point, thermically isolating the island,

there are two additional effects analyzed by Fitzpatrick[1]. First, the diffusion modifies the
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FIG. 4: Asymmetry of current profile flattening due to asymmetric island, producing a large

negative current perturbation to the left of the rational surface and a smaller stabilizing current

perturbation to the right of the rational surface. Schematic flattening is shown in black with the

effect of thermal conductivity in red.

temperature and thus the current profile near the island edges for large islands. This is

shown schematically in Fig. 4 in red. Simulations done in that work were for a symmetric

slab geometry and flattening occured over a large fraction of the island interior. The effect

on ∆′ is given by the addition of ∆′
A with

∆′
A(w) = fF

∫

[j(rx) − j(r)]dr

ψ1(rs)
, (18)

where the subscript A is for asymmetry and fF < 1 takes into account the degree of current

profile flattening in the island. There are no results for the cylindrical case, so the degree

of flattening has to be a free parameter in our model. The present analysis is incapable of

determining the degree to which the current profile is flattened in the island, requiring a

simulation which includes thermal transport. We have used values of fF ranging from 0.5

to 1.0 with no change in the qualitative nature of the results.

Secondly, any modification of ∆′ due to changes in the current profile in the island is not

valid for very small island width, the perpendicular heat diffusion destroys the temperature

perturbation and the normal equilibrium current profile is restored. The small island effect is

expressed by multiplying ∆′
δj by w2/(w2 +w2

F ), with wF given by
√

8(κ⊥/κ‖)
1/4(Rrs/ns)

1/2,

where s = rsq
′/q is the local shear and κ⊥ and κ‖ are the cross field and parallel heat
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FIG. 5: Island asymmetry vs width.

conductivities. The same considerations apply to ∆′
A. For typical fusion plasma parameters

κ⊥/κ‖ ∼ 10−9 and with aspect ratio R = 5 we have wF ∼ 0.02.

Note that all previous calculations of tearing mode saturation did not allow for flattening

of the current profile inside the island along with the asymmetry and thus did not include

this effect.

Unlike the change in island width, the effective value of ∆′ due to both effects can be

found analytically using the local approximation. Including the Fitzpatrick factor for small

islands we have

∆′
δj(w) = −32

π

δj1
ψ′′

0

w

w2 + w2
F

, ∆′
A(w) =

8j′(rs)

πψ′′
0

w2

w2 + w2
F

fA, (19)

where fA takes account of asymmetry A and degree of island flattening, given by fA =

AfF , and a common factor of 2/π approximates the flux surface averaging. The analytic

expression for the island width in terms of the amplitude, 4
√

−ψ1/ψ′′
0 is fairly accurate,

but the asymmetry and the saturated values of amplitude must be found numerically. We

note that agreement with experimental values of neoclassical bootstrap current required

increasing[14] the value of ∆′
δj above the analytic expression given by Eq. 19.

Shown in Fig. 5 is the asymmetry for the disruption case as a function of width w, seen

to be almost linear in w, so fA is approximately proportional to w. This linear dependence

of the asymmetry on width is important for the temporal evolution of an island.

Shown in Fig. 6 are the island flux surfaces, in the state with ∆′(w) equal to zero[10]
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FIG. 6: Magnetic islands including the effect of current flattening. The small island has amplitude

α = 10−4, and width w = .05, A = .26. The amplitude of the large island is α = 1.5 × 10−3, with

width w = 0.18, and asymmetry A = .78. Profile parameters are those of the disruption test case

with fF = 1.

with no current perturbation, with width w = .05 and asymetry A = .26, and a larger island

due to a negative current perturbation with width w = .18 and asymmetry A = .78. The

asymmetry and the shift of the X- and O-points are clearly visible in the larger island.

IV. ISLAND TEMPERATURE

Energy transport in the island is given by the balance of Ohmic heating and radiation

∂tE = ∇ · (κ∇T ) +H(T ) −R(T ) (20)

with H(T ) the differential Ohmic heating and any other heating source in the island, and

R(T ) the radiation loss, κ the cross field heat conductivity. We wish to find the steady state

temperature profile in the island. Since in fusion plasmas the heat conductivity parallel to the

magnetic field is typically nine orders of magnitude larger than the cross field conductivity we

assume the temperature is equilibrated along the flux surfaces, so we require that T = T (ψ).

Then using ∇T = T ′∇ψ, and averaging ∂tE on the flux surfaces and setting it to zero we

have

0 = κT ′′ <(∇ψ)2> +κT ′ <(∇2ψ)> +H(T ) −R(T ) (21)

11



FIG. 7: Island temperature profiles for cases dominated by radiation and by Ohmic heating.

where the brackets indicate flux surface averaging. In the island ∇2ψ ≃ ψ′′
0(rs) which is order

one, and (∇ψ)2 ≤ (ψ′′
0(rs)w)2/4 << 1, so in fact we are left with a first order differential

equation for the temperature

0 = κψ′′
0(rs)

dT

dψ
+H(T ) −R(T ) (22)

with the boundary condition the value of T at the separatrix. With a balance between

differential heating and radiative loss dT/dψ = 0, the island temperature is everywhere

equal to the value at the separatrix.

Examples of solutions T (ψ) are shown in Fig. 7, where ad hoc functions for the Ohmic

heating H(T ) and radiation R(T ) were used. The positive differential temperature case is

dominated by Ohmic heating, and the negative differential temperature case by radiation.

We used κ = 1, constant density, and T = 1 at the separatrix. These functions are simply to

demonstrate the method of obtaining the temperature profile from the radiation and heating

models, the shape does not reflect any physical model. From the change in T in the island

interior we calculate the change in η and the subsequent change in the current profile in the

island. Also from the temperature gradient in the island, the island width, and the local heat

conductivity we can calculate the power necessary to obtain this temperature differential. A

future publication will examine explicit models for radiation and heating including impurity

and plasma density dependence[18] in order to make comparison with experiments.

The perturbed current harmonic resulting from Eq. 15 for the case of Spitzer resistivity
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FIG. 8: Example of perturbed current harmonic j1(r). Spitzer resistivity δj ∼ T 3/2 was used, with

T linear in ψ − ψs in the island interior. For this plot the magnitude of the perturbed current

jI(ψ) was taken to be equal to the on-axis current density j0. At the right is shown a schematic

depiction of the two destabilizing effects. The asymmetry produces a large negative perturbation

of j(r) to the left of the rational surface and a smaller positive perturbation to the right. Excess

radiation cooling over Ohmic heating produces a negative bulge of current in the center of the

island, shown in blue, and heating produces a positive bulge, shown in red. Cooling and flattening

are destabilizing and together produce exponential island growth.

η ∼ T−3/2 is shown in Fig. 8, with

jI(ψ) = js
T 3/2(ψ) − T

3/2
s

T
3/2
s

, (23)

and js and Ts the equilibrium current and termperature at the separatrix, and for this plot

the temperature was taken to be a linear function of the flux in the island interior

Temporal evolution can be found by noting that when the island is larger than the tearing

layer the growth is given by Eq. 16, or

dw

dt
= r2

s [∆
′(w) + ∆′

δj(w) + ∆′
A(w)] (24)

with time in units of the resistive time τR = r2
s/η.

It is easy to see that island heating causes saturation at small width, but an imbalance

of radiation over Ohmic heating leads to exponential growth of the island. From Eq. 22
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FIG. 9: Growth of an island in the disruption test equilibrium, with a fixed temperature gradient

in the island, determined by an imbalance of radiation loss and Ohmic heating. Shown is the

island width and the central temperature normalized to the temperature at the separatrix and ∆′

at each time, giving the instantaneous island growth rate. Full flattening was assumed, fF = 1.

The plots are for a) radiation and heating balanced, b) and c) radiation dominated, d) heating

dominated. At time t = 0.2 the imbalance produced an O-point temperature differential TO/Tx of

a) 0, b) -.002, c) -.003, and in the strongly cooled case (c) the temperature differential at t=0.5

with w = 0.1 was 3 percent. In the case with heating, (d) the final central island temperature

differential was .001.

the temperature gradient in the island is fixed by the imbalance between radiation loss

and Ohmic heating. Consider an initial state with a saturated island and introduce a

constant radiation loss R. This will produce a negative temperature differential in the island

interior with a peak value at the island O-point given by Rdψ ∼ Rw2. The resistivity will

increase and the current will decrease on a time scale for current diffusion producing a local

perturbation of the current as shown in Fig. 8, proportional to w2, giving a contribution to

∆′
δj(w) from Eq 19 proportional to w. In addition, since fA ∼ w, we find ∆′

A(w) ∼ w. The

island grows with dw/dt proportional to w, ie exponentially. However, either one of these

alone is not enough to produce exponential growth because of the stabilizing effect of ∆′(w).

In Fig. 9 are shown simulations of this process, with a small fixed imbalance between

radiation loss and Ohmic heating. The initial state was given by a very small perturbation,

producing a weakly unstable island with w = 10−3. Time is in terms of the resistive time

τR = r2
s/η. Each time step the mode amplitude is advanced using Eq. 24, the temperature

integrated over the island flux surfaces, and δj1 and ∆′(w), ∆′
δj(w), and ∆′

A(w) calculated.
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FIG. 10: Island evolution in the disruption case with and without the effect of asymmetric flatten-

ing. The radiation term is constant and the same for each case. Without the effect of asymmetric

flattening exponential growth is absent, and the saturation width is much smaller than the case

with flattening and no cooling.

Note that the temperature differential necessary to produce rapid growth is well below one

percent for small island width, not easily noticable experimentally. Final island widths with

heating of less than one percent are significantly smaller than unheated states.

Because of the strong effect of the asymmetry, unless the equilibrium is very near thresh-

old, with ∆′ small, island heating is necessary to maintain an island saturated at small

width. Minimal cooling produces exponential growth. Without the effect of the flattening,

cooling produces an increase in the saturated island width, but it takes a very extreme tem-

perature differential to produce a large island. This is why previous attempts to describe

the Greenwald effect through this process failed. An example of an initial perturbation near

threshold with a small radiation term, with and without the effect of asymmetric flattening

is shown in Fig. 10.

V. GENERAL EQUILIBRIA

In this section we explore a method of constructing a cylindrical equilibrium which best

matches results for an equilibrium of general aspect ratio, shape, and beta. To do this

we note that the island saturation dynamics is determined by the form of the helical flux
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FIG. 11: Island evolution with the cylindrical formalism with and without the effect of asymmetric

flattening of the current profile using equilibrium data from DEBS. a) flattening, no cooling, b)

no cooling and no flattening, c) flattening with a small constant temperature gradient due to

cooling, d) the same temperature gradient but no flattening. Without the effect of asymmetric

flattening exponential growth is absent, and the saturation width is much smaller than the case

with flattening and no cooling, only slightly larger than the case without flattening or cooling.

function, the current density profile and the q profile. Thus for any equilibrium we generate

these functions of the outboard midplane minor radius, and then use this data to integrate

the equations in the cylindrical model. The helical flux thus takes into account paramagnetic

or diamagnetic modifications of the toroidal flux, and the current density profile and the q

profile other modifications of the equilibrium from a large aspect ratio circular case.

This allows direct comparison with experimental equilibria, as well as with simulations

using codes employing more general equilibria, including time evolution and heat trans-

port, using the 3-D pressureless resistive compressible magtnetohydrodynamic (MHD) code

DEBS[13], which includes an aspect ratio dependent paramagnetic modification of the

toroidal field, changing the shape of the helical flux. In Fig. 11 is an example with the

cylindrical analysis but using the q, j, and ψ profiles taken from a simulation with DEBS.

The helicity profile ranged from q(0) = 1.12 to q(1) = 3.4, the rational surface was rs = .703

and the aspect ratio R/a = 2. This equilibrium is more unstable to the m = 2 mode than

the disruption case treated in the previous sections, so saturated island widths are signifi-
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cantly larger. Simulations with DEBS must avoid the q = 1 surface for numerical reasons

and shifting q upwards moved the equilibrium farther from threshold. The simulation with

DEBS also gave unlimited growth of the island with a small imbalance of radiation over

Ohmic heating, and the saturated island width with no curent flattening was in reasonable

agreement with the cylindrical simulation shown above. More extensive results of the DEBS

simulation are included[19] in a separate paper. Further simulations will be done also with

the two fluid resistive MHD code NIMROD[20].

VI. CONCLUSIONS

From the analysis shown it is clear that the relative thermic isolation of a magnetic island

and the effects of Ohmic heating and radiation can lead to rapid growth or mild contraction

of a saturated island due to a tearing mode. The m = 2 island has long been a candidate

for the onset of significant loss of plasma to the wall and the limiting or quenching of a

discharge or even violent disruption[21]. In this paper we examine the destabilizing effect

due to the asymmetry of the magnetic island, and show how relatively minor modification

of the current profile in an island interior can lead to rapid change in the saturated island

width, and that a dominant effect can be produced by temperature changes within the

island. A small imbalance between radiation loss and Ohmic heating within an island can

lead to rapid island growth. We also demonstrate how to solve for the temperature within

the island due to the competing effects of Ohmic heating and radiation loss. Coupled with a

model for radiation from the island interior due to density changes and influx of impurities

this mechanism is a candidate for accounting for the Greenwald density limit. The inclusion

of realistic models for radiation and plasma heating and thus dependencies on density and

impurities will be included in future publications. In a full toroidal analysis toroidal coupling

to higher harmonics would play an important role in leading to large scale stochastic fields

and plasma loss, but this simple cylindrical treatment appears capable of demonstrating the

major effects and allowing rapid exploration of a large range of equilibrium and radiation

parameters. In addition it is capable of displaying qualitative effects due to the degree

of current profile flattening in the island, the form of the radiation and Ohmic heating

functions, modifications due to equilibrium changes due to plasma pressure and shape, etc.

Future publications will make more detailed comparison of the cylindrical model with full
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toroidal simulations, and explore a detailed comparison with the experimental Greenwald

limit. It is also of interest to explore significance of this destabilizing effect on magnetic

reconnection in the solar corona and in the magnetosphere.
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