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Motivations/Summary

• High fusion power density requires high-β operation
• Rotational stabilization of RWM may not be effective

in ITER
• Active feedback control may not completely suppress 

RWM due to wall-shielding

• Fluid theory does not give accurate predictions
• Consider mode-particle interaction. Trapped particles are 

stabilizing
• The RWM can be suppressed without rotation
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* Liu, Bondeson, Gribov, Polevoi, Nuc. Fus.44, 232 (2004)



Previous RWM theories predict stabilization 
for large plasma flows

• Rotation and dissipations are the essential ingredients
for stabilization

• The main dissipative effects in high-temperature plasmas
require large flow velocities: the continuum damping

||rot soundk vΩ = ||rot Alfvenk vΩ =

doppler rot rotω ω≡ − Ω ≅ −Ω
�0 for RWM

Bondeson and Ward (‘94), Betti and Freidberg (’95), Finn (’95), Fitzpatrick and Aydemir (’96)

the ion Landau damping  || ||rot ik vΩ = Bondeson and Chu (’98)
Liu et al, 2004



RWM growth rate from the 
Energy Principle

Haney & Freidberg (‘89)��� � �
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Stability condition:
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Qualitative analysis of the stability condition
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Five regimes of RWM stability/instability

Full stabilization

I



Kinetic theory of the RWM: approximations

•RWM frequency: ω ~1/�w � 100/ �w

• � <<  �Di � zero mode frequency 
(�Di magnetic drift frequency)

• �eff << �Di� collisionless ions 

• 	rot 
 �*i � quasi-stationary plasma

• Retain finite equilibrium electric field E 

~



Kinetic trapped-ion effects enter through 
the perturbed perpendicular pressure

Electrostatic term 
includes the equilibrium electric field �
and depends on ξ through quasi-neutrality
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Kinetic pressure

Perturbed distribution function



Large aspect ratio approximation for  
with nonzero equilibrium E

Diamagnetic drift frequencies
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m-th poloidal harmonic

Kp�

Doppler shifted frequency
in the E�B frame

doppler
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Resonance depends on toroidal rotation

Mode-particle resonance:
Doppler shifted frequency = magnetic drift frequency

zero frequency approx.
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Ion force balance equation

���� � ���� � ���� No resonance if �rot��*i
No resonance if |�rot |>>�*i



Kinetic-�W versus rotation velocity
for ITER-like plasmas

Optimum resonance: stabilizing

Stabilizing

Stabilizing/destabilizing



A simplified sharp boundary equilibrium* is used 
to solve the eingenvalue problem for the  RWM
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*Betti, Phys. Plasmas 5, 3615 (1998)
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• Flat current density and pressure profiles
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Stability problem is reduced to simple
fluid theory in plasma core

• Kinetic pressure enters in momentum equation

• Kinetic contribution vanishes in plasma core 
because equilibrium pressure is flat

	�� � 
�


�
� � ������ ������ �� �  �

	��� � 	�� �!����� �	�� �� � 	� � �



Only fluid terms in the plasma core. Solve 
using the small a/R expansion

• The perturbed magnetic flux follows simple power laws of  r

• The constants are determined through the matching 
conditions at the current tube boundary r=c
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Delta-function-like kinetic pressure 
at plasma edge

Plasma pres.

Vacuum

a r

Total pressure 
is finite
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Kinetic pressure enters through the
boundary conditions at the plasma edge

• Boundary condition at the plasma edge

• Boundary condition includes kinetic effects
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A linear system is derived by matching 
the solutions at the plasma boundary

• Dispersion relation is derived by matching the vacuum to the   
plasma solution

Plasma column magnetic term

Kinetic
term Vacuum term
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Resistive wall term
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Kinetic terms are frequency dependent and 
can be of the same size as the fluid terms
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RWM growth rate is found by setting
to zero the determinant of the linear system

• Set 2<q<2.5 for r<a and q�� for r=a,
• � = a� �/R �0.4
• Wall radius/plasma radius = b/a�1.2
• RWM growth rate is calculated for varying  β

Use ITER-like parameters for
advanced tokamak mode



Without kinetic effects the sharp boundary model 
approximately reproduces VALEN* results for ITER

*Navratil, Bialek, Boozer & Katsuro-Hopkins, MHD Workshop, Nov 3-5, 2003, Austin, TX



Trapped-ion kinetic effects suppress the 
RWM for stationary ITER-like plasmas

Kinetic term is multiplied by ΘΘΘΘ



Trapped-ion stabilization is ineffective 
for large plasma flows



Calculate RWM growth rate with 
a MHD stability code

• Kinetic effects does not significantly change mode 
eigenfunction

• Obtain RWM eigenfunction from ideal MHD code 
• Calculate δW’s including δWK

• Calculate growth rate from energy principle
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Energy principle vs eigenvalue analysis: 
comparison of numerical results

eigenvalue analysis



Conclusions

• Magnetic drift resonance is stabilizing for the 
RWM

• Non-resonant part of kinetic effect counteracts 
fluid instability drive 

• Theory from a simple model of ITER-like 
plasma indicates that RWM can be suppressed 
without plasma rotation

• More realistic predictions can be obtained with
minor changes to ideal MHD stability codes


