Resistive Wall Modes in Quasi-Stationary Collisionless Plasmas

Bo Hu, Riccardo Betti and Luca Guazzotto

Laboratory for Laser Energetics University of Rochester, Rochester, NY 14623

Sherwood Fusion Theory Conference

Missoula, MT

April 26-28, 2004

3B04

Motivations/Summary

- High fusion power density requires high- β operation
- Rotational stabilization of RWM may not be effective in ITER
- Active feedback control may not completely suppress RWM due to wall-shielding

$$\beta_{max}^{optimum \, feedback} \approx \frac{\beta_{\infty} + \beta_{b}}{2}$$

- Fluid theory does not give accurate predictions
- Consider mode-particle interaction. Trapped particles are stabilizing
- The RWM can be suppressed without rotation

* Liu, Bondeson, Gribov, Polevoi, Nuc. Fus.44, 232 (2004)

Previous RWM theories predict stabilization for large plasma flows

- Rotation and dissipations are the essential ingredients for stabilization
- The main dissipative effects in high-temperature plasmas require large flow velocities: the continuum damping

Bondeson and Ward ('94), Betti and Freidberg ('95), Finn ('95), Fitzpatrick and Aydemir ('96)

RWM growth rate from the Energy Principle

Qualitative analysis of the stability condition

Five regimes of RWM stability/instability

Kinetic theory of the RWM: approximations

•RWM frequency: $\omega \sim 1/\tau_{\rm w}$ - 100/ $\tau_{\rm w}$

- $\omega \ll \omega_{Di} \notin zero mode frequency$ (ω_{Di} magnetic drift frequency)
- $v_{eff} \ll \omega_{Di} \Leftarrow$ collisionless ions
- $\Omega_{rot} \neq \omega_{*i} \in quasi-stationary plasma$
- Retain finite equilibrium electric field E

Kinetic trapped-ion effects enter through the perturbed perpendicular pressure

Electrostatic term $\tilde{Z} \equiv \tilde{\Phi} + \tilde{\xi}_{\perp} \cdot \nabla \Phi$ includes the equilibrium electric field Φ and depends on ξ through quasi-neutrality

Large aspect ratio approximation for \tilde{p}^{K} with nonzero equilibrium E

m-th poloidal harmonic

$$\tilde{p}_m^K = \frac{2^{3/2} \epsilon^{1/2}}{\pi^{3/2}} \int_0^\infty \frac{d\varepsilon \varepsilon^{3/2}}{T^{5/2}} e^{-\varepsilon/T} \int_0^1 du K(u) p_i \lambda \sigma_m \sum_{\ell=-\infty}^{+\infty} \sigma_\ell \Upsilon_\ell$$

$$\sigma_m = \int_0^{\pi/2} d\chi \frac{\cos[2(m-q) \arcsin(\sqrt{u} \sin\chi)]}{K(u)\sqrt{1-u\sin^2\chi}} \quad \Upsilon_\ell = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\ell\theta + i\phi + i\omega t} \left(\frac{\varepsilon}{T_i} \tilde{\xi}_\perp \cdot \kappa + \frac{Z_i e}{T_i} \tilde{\mathcal{Z}}\right)$$

Resonance depends on toroidal rotation

Kinetic- δ W versus rotation velocity for ITER-like plasmas

A simplified sharp boundary equilibrium* is used to solve the eingenvalue problem for the RWM

^{*}Betti, Phys. Plasmas 5, 3615 (1998)

Stability problem is reduced to simple fluid theory in plasma core

• Kinetic pressure enters in momentum equation

$$\nabla (p^F + \tilde{p}^K + B^2/2) - \kappa \tilde{p}^K - \boldsymbol{B} \cdot \nabla \boldsymbol{B} = 0$$

• Kinetic contribution vanishes in plasma core because equilibrium pressure is flat

$$\tilde{p}^K \sim \frac{\partial f}{\partial r} = 0$$
 inside plasma $(r < a)$

Only fluid terms in the plasma core. Solve using the small *a*/*R* expansion

• The perturbed magnetic flux follows simple power laws of r

$$\tilde{\boldsymbol{\psi}}_{m}(r \leq c) = \boldsymbol{\psi}_{m}^{0} \left(\frac{r}{c}\right)^{|m|} \quad \tilde{\boldsymbol{\psi}}_{m}(c \leq r \leq a) = \boldsymbol{\psi}_{1m} \left(\frac{r}{c}\right)^{|m|} + \boldsymbol{\psi}_{2m} \left(\frac{c}{r}\right)^{|m|}$$

• The constants are determined through the matching conditions at the current tube boundary r=c

$$\tilde{\psi}_m$$
 and $d\tilde{\xi}_m / dr$ are continuous at $r = c$
 $\tilde{\psi}_m = rBh_m\tilde{\xi}_m / m$ $h_m = n - m / q$

Delta-function-like kinetic pressure at plasma edge

Kinetic pressure enters through the boundary conditions at the plasma edge

• Boundary condition at the plasma edge $\widetilde{B^2}(r\simeq a) = -2\widetilde{p}^K(r\simeq a)$

$$\nabla(p^F + \tilde{p}^K + B^2/2) = \kappa \left(\widetilde{B^2} + \tilde{p}^K\right)$$
$$= -\kappa \tilde{p}^K$$

• Boundary condition includes kinetic effects

$$\left[\left| p^F + B^2 / 2 \right| \right]_a = -\kappa \cdot \hat{n} \int_{a-}^{a+} dr \tilde{p}^K$$

A linear system is derived by matching the solutions at the plasma boundary

• Dispersion relation is derived by matching the vacuum to the plasma solution

Kinetic terms are frequency dependent and can be of the same size as the fluid terms

RWM growth rate is found by setting to zero the determinant of the linear system

Use ITER-like parameters for advanced tokamak mode

- Set 2<q<2.5 for r<a and $q \rightarrow \infty$ for r=a,
- $\epsilon = a\sqrt{\kappa}/R \approx 0.4$
- Wall radius/plasma radius = $b/a \approx 1.2$
- RWM growth rate is calculated for varying β

Without kinetic effects the sharp boundary model approximately reproduces VALEN* results for ITER

*Navratil, Bialek, Boozer & Katsuro-Hopkins, MHD Workshop, Nov 3-5, 2003, Austin, TX

Trapped-ion kinetic effects suppress the RWM for stationary ITER-like plasmas

Trapped-ion stabilization is ineffective for large plasma flows

Calculate RWM growth rate with a MHD stability code

- Kinetic effects does not significantly change mode eigenfunction
- Obtain RWM eigenfunction from ideal MHD code
- Calculate δW 's including δW_K
- Calculate growth rate from energy principle

$$\gamma \tau_w = -\frac{\delta W^{\infty}_{MHD} + \delta W_K}{\delta W^b_{MHD} + \delta W_K}$$

Energy principle vs eigenvalue analysis: comparison of numerical results

Conclusions

- Magnetic drift resonance is stabilizing for the RWM
- Non-resonant part of kinetic effect counteracts fluid instability drive
- Theory from a simple model of ITER-like plasma indicates that RWM can be suppressed without plasma rotation
- More realistic predictions can be obtained with minor changes to ideal MHD stability codes