Influence of pressure-gradient and shear on ballooning stability in stellarators

S.R.Hudson¹, C.C.Hegna², N.Nakajima³, R.Torasso⁴, A.S.Ware⁵
1) Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton NJ 08543, USA.
2) Department of Engineering Physics, University of Wisconsin–Madison, WI 53706, USA.
3) National Institute for Fusion Science, Nagoya 464-01, Japan.
4) Courant Institute of Mathematical Sciences, New York University, NY 10012, USA.
5) Department of Physics and Astronomy, University of Montana, Missoula, MT, 59812, USA.

A simple, semi-analytic method for expressing the ballooning growth rate as functions of the pressure-gradient and the averaged magnetic shear is introduced. For a given configuration, the the ballooning equation is written $[\partial_{\eta}P\partial_{\eta}+Q-\lambda\sqrt{g}^2P]\xi=0$, where the ballooning coefficients $P=B^2/g^{\psi\psi}+g^{\psi\psi}L^2$ and $Q=2p'\sqrt{g}(G+\iota I)(\kappa_n+\kappa_g L)$. Here L is the integrated local shear, $L=\int_{\eta_k}^{\eta}s(\eta')d\eta'$, where $s=\iota'+\tilde{s}$ is the local shear, and κ_n , κ_g represent the normal and geodesic curvatures. This is an eigenvalue equation and for realistic geometry must be solved numerically.

An analytic variation in the pressure-gradient, $p' \to p' + \delta p'$, and average shear, $t' \to t' + \delta t'$, is imposed at an arbitrary flux surface of an MHD equilibrium. The relevant equilibrium quantities are then adjusted to preserve force balance. The variations $(\delta p', \delta t')$ alter the ballooning coefficients, $P \to P + \delta P$, $Q \to Q + \delta Q$, and the impact of the variations on the ballooning growth rate may be determined using eigenvalue perturbation theory. An expression for the change in the ballooning eigenvalue can be derived

$$\lambda(\delta p', \delta \iota') = \lambda_o + \frac{\partial \lambda}{\partial p'} \delta p' + \frac{\partial \lambda}{\partial \iota'} \delta \iota' + \frac{\partial^2 \lambda}{\partial p'^2} \delta p'^2 + \frac{\partial^2 \lambda}{\partial p' \partial \iota'} \delta p' \delta \iota' + \frac{\partial^2 \lambda}{\partial \iota'^2} \delta \iota'^2 + \dots, \tag{1}$$

where λ_0 is the eigenvalue of the original equilibrium and explicit expressions for the derivatives, up to arbitrary order, are determined from a *single eigenfunction calculation*. Using only this information, whether increased pressure-gradient is stabilizing or de-stabilizing, and the existence of a second stable region, can be determined.

Marginal stability diagrams for an LHD-like configuration (left), a quasi-poloidal configuration (center) and an NCSX-like quasi-symmetric configuration (right) are presented in the figure below. The solid line shows the exact calculation: that is, the eigenvalue equation is resolved numerically for each variation $(\delta p', \delta \, t')$ on a grid of 200×200 points; and the dotted line shows the approximation provided by Eqn.(1). Also shown is the location in $(p', \, t')$ space of the original equilibrium, indicated with a '+' if that equilibrium is unstable or a ' \square ' if it is stable.

The analysis presented here provides both a numerically efficient and physically insightful approach to determining second stability in stellarators.





