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Q-uncertainty due to uncertainty in Tped is 
a critical issue for ITER

(Hubbard, TTF2002)



XGC is a Hamiltonian ion g.c. code for self-
consistent, dynamical neoclassical transport

• Massively parallel (1,028 processors on SEABORG,    
∼5,000 cpu hrs)

• EFIT H-mode flux surface & limiter (with X-point)
• Typical simulation range: 0.88 < Ψ < 1.03
• Conserving MC Coulomb collision in t-evolving plasma
• Power out-flow from core
• Dynamic 2d Monte Carlo neutral transport
• Simple anomalous diffusion coefficient
• Evaluates ni , Ti , F , Ví, VExB, (and Vdia)profiles
• Assumes F(ψ) in the present version
• Lacks accurate Er evaluation in scrape-off (F=0).



Dynamic 2D Neutral Monte Carlo Transport
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• Maxwellian Franck-Condon 
D0 source at ψo >1

• CX, ionization,
elastic collisions in
time-evolving plasma

• Poloidal source
distribution is
an input.

• Source rate either 
input or from recycling



Neoclassical Er is determined 
from ion dynamics (Jir à Jer)

[<|∇ψ|2>+4πnimic2<|∇ψ|2/B2 >] ∂2φ/∂t∂ψ = 4π<Jgc·∇ψ >

ion (banana)
dynamics

(Er,S,n,Ti)

(Er,S,n,T) -Er

Jloss -Jreturn

(∑/∑t) <E·∇ψ>+4π<(Jcp+Jgc)·∇ψ>=c<∇·Bä∇ψ>=0

The code finds Jnet=Jloss(Er)+Jreturn(Er) =0  
for further evolution in quasi-equilibrium.



Two ways to obtain a maximal pedestal

I. Buildup
- Physically: More realistic, buildup demonstrations
- Numerically: Highly time consuming for scaling studies.

Needs tedious adjustment of no, Gi
Ambi for “standardized”

steepest n & Ti profiles.
II. Reduction from a steeper profile (for scaling law)

- Physically: a fake process to find a neoclassical 
quasi-equilibrium solution [Check Jgc(separatrix)=0].

no is not needed.
Poisson’s eq. keeps the classical polarization density.
Use Gturb(ambipolar) or simply nigc for profile evolution.

- Numerically: Efficient way of getting a “standardized”
maximal n & Ti profile.  Uniqueness provided by Jreturn.



Quasi-neutral g.c. profile evolution (PoP, 2004)

• In neoclassical quasi-equilibrium, Jcp and ncp are negligible.  
Ge

ei is automatically ambipolar and very weak.
fl Ion g.c. (ni =ni,gc) simulation is enough (nncp included) .

• Can a transient gc evolution (ni=ni,gc) be quasi-neutral?
Yes, equivalent to removal of net neutral plasma Δn=ni.cp.

• The more important ni,ncp is included in ni,gc.   
nncp(banana) àncp(gyro)

• dEr/dt is evaluated with the smaller 
classical polarization included.

(∑/∑t) <E·∇ψ>+4π<(Jcp+Jgc)·∇ψ>=c<∇·Bä∇ψ>=0

• From 4πJcp=-(ω2
pi /ΩI

2) ∑∇⊥Φ/∑t, we get
[ <|∇ψ|2> + <|∇ψ|2 ω2

pi /Ωi
2> ] ∂2 Φ/∂t∂ψ = 4π<Jgc·∇ψ >



(Well-known) argument for ni,cp=neo-ni,gc

• Ampere’s law
[ <|∇ψ|2> + <|∇ψ|2 ω2

pi /Ωi
2> ] ∂2 Φ/∂t∂ψ = 4π<Jgc·∇ψ >

is equivalent to the Poisson’s eq.
∇r

2Φ + (ω2
pi/Ωi

2)∇r
2Φ =4πe(neo- ni,gc)

∇r
2Φ + 4πeni,cp =4πe(neo- ni,gc)

• Since ω2
pi/Ωi

2à1, we get 
ni,cp ≅ neo- nigc

• The smaller Ji,cp plays an
important role in quasineutral evloution
(and GAM oscillation)!

• Transient profile evolution in g.c. is achieved by removal of 
a net neutral plasma by Δn=ni,cp until quasi-equilibrium.

• The real neoclassical simulation then starts.



Base neutral density evolution



Saturation at 40-100 transit time
(7 to 15 msec)

Radial current decay

Transient Quasi-equilibrium



Steepest n-pedestal (νc=0, DIIID 2.1T) in core:
Shows importance of orbit squeezing

Steepest pedestal with ErSteepest pedestal without Er

ψψ



Steepest n-pedestal at separatrix (νc=0)
Supported by ErUnsupported by Er

0.8cm

ψ ψ

1cm
1.

ψ

Er



Diverted Edge
(orbit X-loss)

Closed Flux surface

There is loss from ψ<1 (Er=0, νc=0)

Er=0



Closed 
Flux surface
Edge

Diverted Edge
(Er=0 is imposed
in scrape-off)

Greater Er at edge from the ion loss (νc=0)

Only a proper kinetic
treatment can yield 
correct pedestal
and E(r)!!!



X-Transport
= Collisional loss-cone transport

due to X-point

5 mm
at outside
midplane

Strong 
effective
collisions

No “Collisionless Oribt” exists in this loss.

C.S. Chang, et al, Phys. Plasmas 9, 3884 (2002)



Collisionless Wall-Hitting in DIII-D
⇒ Dominantly X-Loss



Collisional Wall-Hitting in DIII-D
⇒ Dominantly X-Loss

Inner wall strike



Wall-Hitting in C-Mod
⇒ Dominantly X-Loss



Er=0, νc=0, core Er≠0, νc=0 core Er≠0, νc≠0, core



Dynamics of pedestal buildup





Neutral ionization raises pedestal density



Er increases with Ti (ped) under 
Turbulence diffusion (D=1 m2/s)

Ti=
0.5 keV

1 keV



Forward ∇B yields ≈15% greater ExB
with neutrals and DTurb



Conventional Neoclassical flow equation
in the core without the dTi/dr ambiguity

Ui∥= (cTi/eBp)(kdlogTi/dr –dlog pi/dr-(e/Ti)dφ/dr)

dTi/dr=0

Good within error bar

ψ

Er(kV/m)

0.8
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Conventional Neoclassical flow equation
Ui∥= (cTi/eBp)(kdlogTi/dr –dlog pi/dr-(e/Ti)dφ/dr

Banana: k=1.17
Plateau: k=-0.5
Collisional: k=-2.1
ν∗∼<1 for Ti=1 keV

nped=5×1019m-3

Plateau
k=-0.5

banana

Er (kV/m)

Er
0.8
ψ

-50

0



The conventional Neoclassical flow equation
ui∥= (cTi/eBp)[kdlogTi/dr –dlog pi/dr-(e/Ti)dφ/dr]

is good for core pedestal
if k is adjusted (finite banana correction?)

k=-1.1

Banana: k=1.17
Plateau: k=-0.5
Collisional: k=-2.1

ν∗∼1 for Ti=1 keV
n=5×1019m-3

0.8 0.90.7

ψ

0

-50

Er(kV/m)



Edge pedestal is not adequately described
by the conventional neoclassical flow eqn.

1 1ψ ψ

k=-0.5
(Plateau)

k=-2.1
(Collisional)

Er

Much worse if banana, k=1.17



Er=0, Jr×Bp>0 Er<0, Ví <0

In the core, Vζ is consistent with conventional neoclassical 
angular momentum conservation with Si =< R2∇ζ·Πi·∇r >≈0

E×B dominant flow,
Strong return current
Jr≅0

Outward 
banana orbits
are squeezed and
counter passing
Ions contribute
more.



Positive toroidal momentum source with a 
strong edge pedestal Si =< R2∇ζ·Πi·∇r >≠0

X-loss 
of v∥<0 ions 
⇒ positive
momentum 
source.

Er<0
Er<0

Core Edge



Excellent Tanh[2(ψ−ψc)/∆ψ] fit

∆ψ



Density pedestal width is an Offset-Linear 
Function of Ti

1/2 for Ti > 0.3 keV

0.5cm

Bo=2.1 T



Density pedestal width ∝ 1/B

This effect is from Jpolar

[<|∇ψ|2> +4πnimic2<|∇ψ|2/B2 >] ∂2φ/∂t∂ψ = 4π <jcode·∇ψ >

∆ψ = 0.015/Bt(T)
Dominance of the Jpolar

⇒ dEr/dt ∝ B2

With greater B
• Faster rise of Er in a 
thin outer layer

• Greater orbit squeezing
• Narrower pedestal width



Density Pedestal Width is not ∝ 1/Bp

∆ψ ∝ ρp?  No, the orbit squeezing does not allow it.
Every orbit at ψ<ψlayer is closed.

Bt(EFIT)/Bt(code)=1, Ti(ped)=1 keV



[Hughes, Mossessian, Hubbard, etc, PoP 9, 3019 (2002)]

∆n = C0 Ipa ne,L
b BT

g Psol
d

g= -0.99±0.29 for 4.5§BT(T)§6.0
(a=0.79≤0.14, b=0.14≤0.14, d=-0.01≤0.08)

• Ti scaling may be hidden in Ip, Psol, and ne,L?
• More experiments are planned.

∆n µ 1/BT agrees with a 
preliminary result from C-Mod



n-width & Er shows little dependence on Nped
(not conclusive yet)



Normally Ti(ped) ª 1/n(ped).
Density width µ Ti

1/2 µ 1/n1/2 in H-mode.
How much of the data trend is the Ti effect?

Mahdavi, Maingi, Groebner, et al,
PoP 10, 3984 (2003)



Conclusions
• XGC can simulate the neoclassical Pedestal buildup

and study pedestal physics.
• Self-consistent oribit squeezing, orbit loss (and neutral 

ionization) are vital to get the correct pedestal.
• Δn

neo µ Ti
1/2(ped) BT

-1 µ ri(ped)
• Neutrals build up pedestal, but not contribute to Δn

neo

• Neoclassical rotation physics needs revision at edge.
• ni(ped) is set by neutrals and Ti(ped) by heating.
• ni and Ti can have different pedestal shapes (neutral effect).
• Er-shear rises with Ti(ped) at L-mode diffusion level.
• Forward B yields stronger Er.
In DIII-D
• Danom∼1 m2/s gives an L-mode pedestal shape.
• Residual Danom∼0.1 m2/s recovers the neoclassical shape.


