Particle Simulation of Neoclassical Pedestal Buildup and Pedestal Scaling Law

> **C.S. Chang S. Ku and H. Weitzner** *Courant Institute, NYU and KAIST, Korea*

Thanks to PPPL, GA, MIT collaborators

Contents

- 1. The XGC code and capability
- 2. Saturated neoclassical pedestal: core & edge Critical role played by self-consistent orbit squeezing and orbit loss
- 3. Neoclassical pedestal buildup in a diverted tokamak edge
- 4. Parallel flow and neoclassical theory
- 5. Pedestal scaling law

Q-uncertainty due to uncertainty in T_{ped} is a critical issue for ITER

(Hubbard, TTF2002)

XGC is a Hamiltonian ion g.c. code for selfconsistent, dynamical neoclassical transport

- Massively parallel (1,028 processors on SEABORG, ~5,000 cpu hrs)
- EFIT H-mode flux surface & limiter (with X-point)
- Typical simulation range: $0.88 < \Psi < 1.03$
- Conserving MC Coulomb collision in t-evolving plasma
- Power out-flow from core
- Dynamic 2d Monte Carlo neutral transport
- Simple anomalous diffusion coefficient
- Evaluates n_i , T_i , Φ , V_{μ} , V_{ExB} , (and V_{dia})profiles
- Assumes $\Phi(\psi)$ in the present version
- Lacks accurate E_r evaluation in scrape-off (Φ =0).

Dynamic 2D Neutral Monte Carlo Transport

Neoclassical E_r is determined from ion dynamics ($J_{ir} \gg J_{er}$)

 $(\partial/\partial t) < \mathbf{E} \cdot \nabla \psi > + 4\pi < (\mathbf{J}_{cp} + \mathbf{J}_{gc}) \cdot \nabla \psi > = \mathbf{C} < \nabla \cdot \mathbf{B} \times \nabla \psi > = 0$

 $[\langle \nabla \psi |^2 \rangle + 4\pi n_i m_i c^2 \langle |\nabla \psi |^2 / B^2 \rangle] \partial^2 \phi / \partial t \partial \psi = 4\pi \langle \mathbf{J_{gc}} \cdot \nabla \psi \rangle$

The code finds $J_{net}=J_{loss}(E_r)+J_{return}(E_r)=0$ for further evolution in quasi-equilibrium.

Two ways to obtain a maximal pedestal

I. Buildup

- Physically: More realistic, buildup demonstrations
- Numerically: Highly time consuming for scaling studies. Needs tedious adjustment of n_o , Γ_i^{Ambi} for "standardized" steepest n & T_i profiles.
- II. Reduction from a steeper profile (for scaling law)
 - Physically: a fake process to find a neoclassical quasi-equilibrium solution [Check J_{gc}(separatrix)=0].
 n_o is not needed.

Poisson's eq. keeps the classical polarization density. Use Γ^{turb} (ambipolar) or simply n_{igc} for profile evolution.

 Numerically: Efficient way of getting a "standardized" maximal n & T_i profile. Uniqueness provided by J_{return}.

Quasi-neutral g.c. profile evolution (PoP, 2004)

- In neoclassical quasi-equilibrium, J_{cp} and n_{cp} are negligible. $\Gamma_e^{e^i}$ is automatically ambipolar and very weak. \Rightarrow lon g.c. ($n_i = n_{i,gc}$) simulation is enough (n_{ncp} included).
- Can a transient gc evolution (n_i=n_{i,gc}) be quasi-neutral? Yes, equivalent to removal of net neutral plasma △n=n_{i.cp}.
- The more important n_{i,ncp} is included in n_{i,gc}.
 n_{ncp}(banana) ≫n_{cp}(gyro)
- dE_r/dt is evaluated with the smaller classical polarization included.
 (∂/∂t) <E·∇ψ>+4π<(J_{cp}+J_{gc})·∇ψ>=c<∇·B×∇ψ>=0

(Well-known) argument for n_{i,cp}=n_{eo}-n_{i,gc}

• Ampere's law

 $\begin{bmatrix} \langle |\nabla\psi|^2 \rangle + \langle |\nabla\psi|^2 |\omega_{pi}^2 \rangle |\partial^2 \Phi |\partial t \partial \psi = 4\pi \langle \mathbf{J}_{gc} \cdot \nabla\psi \rangle \\ \text{ is equivalent to the Poisson's eq.} \\ \nabla_r^2 \Phi + (\omega_{pi}^2) \nabla_r^2 \Phi = 4\pi e(n_{eo} - n_{i,gc}) \\ \nabla_r^2 \Phi + 4\pi en_{i,cp} = 4\pi e(n_{eo} - n_{i,gc}) \\ \text{ Since } \omega_{pi}^2 |\Omega_i^2 \gg 1, \text{ we get} \end{bmatrix}$

 $\mathbf{n}_{i,cp} \cong \mathbf{n}_{eo} - \mathbf{n}_{igc}$

- Transient profile evolution in g.c. is achieved by removal of a net neutral plasma by △n=n_{i,cp} until quasi-equilibrium.
- The real neoclassical simulation then starts.

Base neutral density evolution

Radial current decay

Saturation at 40-100 transit time (7 to 15 msec)

Steepest n-pedestal ($v_c=0$, DIIID 2.1T) in core: Shows importance of orbit squeezing

Steepest pedestal without E_r

Steepest pedestal with E_r

Steepest n-pedestal at separatrix (v_c=0)

Supported by Er

There is loss from ψ <1 (E_r=0, v_c =0)

Greater E_r at edge from the ion loss ($v_c=0$)

Diverted Edge (Er=0 is imposed in scrape-off)

Only a proper kinetic treatment can yield correct pedestal and E(r)!!!

X-Transport = Collisional loss-cone transport due to X-point

C.S. Chang, et al, Phys. Plasmas 9, 3884 (2002)

No "Collisionless Oribt" exists in this loss.

Fig. 1. X-trapping in DIII-D

Collisionless Wall-Hitting in DIII-D ⇒ Dominantly X-Loss

Collisional Wall-Hitting in DIII-D ⇒ Dominantly X-Loss

Wall-Hitting in C-Mod ⇒ Dominantly X-Loss

Dynamics of pedestal buildup

Neutral ionization raises pedestal density

E_r increases with T_i (ped) under Turbulence diffusion (D=1 m²/s)

Forward ∇B yields $\approx 15\%$ greater ExB with neutrals and D_{Turb}

Conventional Neoclassical flow equation in the core without the dT_i/dr ambiguity $U_{i\parallel} = (cT_i/eB_p)(kd/ogT_i/dr - d/og p_i/dr - (e/T_i)d\phi/dr)$

Ψ

Good within error bar

Conventional Neoclassical flow equation $U_{i \parallel} = (cT_i/eB_p)(kd/ogT_i/dr - d/og p_i/dr - (e/T_i)d\phi/dr$

The conventional Neoclassical flow equation $u_{i\parallel} = (cT_i/eB_p)[kdlogT_i/dr - dlog p_i/dr - (e/T_i)d\phi/dr]$ is good for core pedestal if k is adjusted (finite banana correction?)

Banana: k=1.17 Plateau: k=-0.5 Collisional: k=-2.1

 $v_* \sim 1$ for T_i=1 keV n=5×10¹⁹m⁻³

Edge pedestal is not adequately described by the conventional neoclassical flow eqn.

Much worse if banana, k=1.17

In the core, V_{ζ} is consistent with conventional neoclassical angular momentum conservation with $\mathbf{S}_{i} = \langle R^{2} \nabla \zeta \cdot \Pi_{i} \cdot \nabla r \rangle \approx 0$

Positive toroidal momentum source with a strong edge pedestal $\mathbf{S}_i = \langle \mathbf{R}^2 \nabla \zeta \cdot \Pi_i \cdot \nabla \mathbf{r} \rangle \neq 0$

Excellent Tanh[2($\psi - \psi_c$)/ $\Delta \psi$] fit

Density pedestal width is an Offset-Linear Function of $T_i^{1/2}$ for $T_i > 0.3$ keV

Density pedestal width $\propto 1/B$

This effect is from J_{polar}

Dominance of the J_{polar} $\Rightarrow dE_r/dt \propto B^2$

With greater B

- Faster rise of E_r in a thin outer layer
- Greater orbit squeezing
- Narrower pedestal width

 $[\langle \nabla \psi |^2 \rangle + 4\pi n_i m_i c^2 \langle |\nabla \psi |^2 / B^2 \rangle] \partial^2 \phi / \partial t \partial \psi = 4\pi \langle \mathbf{j}_{code} \cdot \nabla \psi \rangle$

Density Pedestal Width is not $\propto 1/B_{p}$

$\Delta_n \propto 1/B_T$ agrees with a preliminary result from C-Mod

[Hughes, Mossessian, Hubbard, etc, PoP 9, 3019 (2002)]

$$\begin{split} &\Delta_{n} = C_{0} I_{p}^{\alpha} n_{e,L}^{\beta} B_{T}^{\gamma} P_{sol}^{\delta} \\ &\gamma = -0.99 \pm 0.29 \text{ for } 4.5 \leq B_{T}(T) \leq 6.0 \\ &(\alpha = 0.79 \pm 0.14, \beta = 0.14 \pm 0.14, \delta = -0.01 \pm 0.08) \end{split}$$

- T_i scaling may be hidden in I_p , P_{sol} , and $n_{e,L}$?
- More experiments are planned.

n-width & E_r shows little dependence on N_{ped} (not conclusive yet)

Normally $T_i(ped) \approx 1/n(ped)$. Density width $\propto T_i^{1/2} \propto 1/n^{1/2}$ in H-mode. How much of the data trend is the T_i effect?

Conclusions

- XGC can simulate the neoclassical Pedestal buildup and study pedestal physics.
- Self-consistent oribit squeezing, orbit loss (and neutral ionization) are vital to get the correct pedestal.
- $\Delta_n^{\text{neo}} \propto T_i^{1/2} (\text{ped}) B_T^{-1} \propto \rho_i (\text{ped})$
- Neutrals build up pedestal, but not contribute to Δ_n^{neo}
- Neoclassical rotation physics needs revision at edge.
- $n_i(ped)$ is set by neutrals and $T_i(ped)$ by heating.
- n_i and T_i can have different pedestal shapes (neutral effect).
- E_r-shear rises with T_i(ped) at L-mode diffusion level.
- Forward B yields stronger E_{r.}
- In DIII-D
- D_{anom}~1 m²/s gives an L-mode pedestal shape.
- Residual $D_{anom} \sim 0.1 \text{ m}^2/\text{s}$ recovers the neoclassical shape.