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• Formation of nonlinear phase-space structures.

• Adiabatic evolution of the structures.

• Stability analysis of the structures.

• Mutual interaction between multiple structures.



Nonlinear Evolution of Waves due Nonlinear Evolution of Waves due 
to Weak Instabilitiesto Weak Instabilities

• Resonant particles destabilize waves a plasma can 
support.

• System is close to the linear instability threshold,
where kinetic drive = background dissipation.

• Spatial structure of waves remains unchanged.

• Dominant nonlinearity is caused by interaction 
with resonant particles

Formation of Nonlinear Phase Space Structures



Formation of Phase Space Formation of Phase Space 
Structures (Experimental Data)Structures (Experimental Data)

TAE modes in MAST

Culham Laboratory, U. K. 
courtesy 

of Mikhail Gryaznevich

Terrella experiment

Columbia University,
Mauel et. al.
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Signature for Formation of Phase Signature for Formation of Phase 
Space Structures (Theory)Space Structures (Theory)
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Explosive self-similar solution for small collisional effects

Numerical simulations 
by M.S. Pekker: the solution 
blows up in finite time

[Berk, Breizman, and Pekker, Plasma Phys. Rep. (1997)]
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Explosive SolutionExplosive Solution

Local flattening  of  the  distribution 
function   produces  large  gradients  
of  the  distribution  function  in  the 
transient regions. The gradients feed 
the instability further.
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Simulation: N. Petviashvili

Formation of “Holes” and “Clumps”Formation of “Holes” and “Clumps”
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Frequency Sweeping of Nonlinear Frequency Sweeping of Nonlinear 
Phase Space StructuresPhase Space Structures

Formation of Nonlinear Phase Space Structures

Background dissipation forces the frequency sweeping !



Slow Evolution of the StructuresSlow Evolution of the Structures
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�Slowly changing wave properties:

Adiabatic invariants for description of the evolution of the trapped 
particle distribution function 

+ equations for the mode phase and amplitude

Self-consistent adiabatic analysis,
stable evolution of waves and particles
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Adiabatic Evolution of the Structures
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Evolution of the mode’s normalized trapping  frequency          in  terms of             
normalized frequency shift          is governed by
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Problems in Adiabatic DescriptionProblems in Adiabatic Description
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Frequency termination point:

0TH →
Bifurcation point:

0TH → 1bΩ →
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Initial trapped particle distribution function:
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Why does the 
adiabatic

theory fail?



SelfSelf--Consistent Consistent PerturbativePerturbative
AnalysisAnalysis

Perturbed equations for the mode’s phase and amplitude

and

Linearized Vlasov equation
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Perturbation of the distribution function:

Integration along unperturbed 
trajectories

[Eremin, Berk, Phys. Plasmas (2004)]
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Dispersion Relation for the Dispersion Relation for the 
Perturbed Perturbed EigenmodesEigenmodes
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Instability AnalysisInstability Analysis
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After a great deal of algebraic manipulations, we find that

If then lhs is positive,
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Instability AnalysisInstability Analysis
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If then lhs is positive,

Stability Analysis of the Structures

 Adiabatic theory “knows” about onset of 
the instability!
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Comparison of predicted evolution 
with particle simulation for a case
when a frequency termination point
is reached. 

Numerical Results: Dynamic RunNumerical Results: Dynamic Run

Stability Analysis of the Structures



SelfSelf--Consistent Dynamics of Consistent Dynamics of 
Multiple StructuresMultiple Structures
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Mutual Interaction between Multiple Structures



Mechanisms for Amplitude Mechanisms for Amplitude 
ReductionReduction

contribution from the trapped region of the neighboring
mode

Explain observed amplitude!
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Mutual Interaction between Multiple Structures

Regular Dynamics:

Chaotic Erosion of the Separatrix: stochastic instability + frequency
sweeping



SummarySummary

•• Nonlinear phase space structures occur spontaneously in a 
resonant system with damping, close to instability threshold.

• The adiabatic analysis very accurately describes the frequency
sweeping when the mode is stable.

• The self-consistent adiabatic solution may evolve to points, 
where the adiabatic analysis fails.

• Linear perturbative analysis demonstrates that these 
points are exactly where an instability is triggered.



Summary (cont.)Summary (cont.)

• Nonlinear response interesting, needs further study.

• Generation  of subsidiary structures changes mode
amplitude; analytic prediction successfully made.

• Theoretical arguments considered here should be important
in understanding the experimental data.


