A simple model of interactions between electron temperature gradient and drift-wave turbulence

C. Holland UCSD

With: P. H. Diamond, UCSD

Motivation

- A current focus of plasma turbulence research is to understand possible mechanisms of anomalous electron heat transport, particularly when ion thermal and particle transport are suppressed
 - Electron temperature gradient (ETG) mode is a currently popular
 - Alternatives such as short-wavelength trapped electron modes exist
 - ETG has drastically smaller characteristic scale than ITG, but it has been argued that it may from large-scale convective cells with enhanced transport, such as streamers
- New trend: ETG as significant source of electron transport both in and outside of transport barriers (e.g. Horton et. al PoP 2000)
 - Since it is possible to have **relevant** instabilities on multiple length scales, should understand their interactions

Outline

- 1. Background and Basic Physics
- 2. Effectiveness of Two-Dimensional DITG Shearing of ETG Modes
- 3. Effect of DITG Modulations of η_e
- 4. Back-Reaction of ETG on DITG Turbulence
- 5. Extended Ecology Model for ETG DITG ZF Dynamics

Basic Equations for ETG / DITG

• Basic fluid model of instabilities $(x \rightarrow r, y \rightarrow r\theta)$

$$\frac{d}{dt} \left(\left(\delta - \rho^2 \nabla_{\perp}^2 \right) \phi \right) \pm V_n^* \frac{\partial \phi}{\partial y} - V_B^* \frac{\partial p}{\partial y} = 0$$
$$\frac{dp}{dt} + V_p^* \frac{\partial \phi}{\partial y} = 0$$

$$V_f^* = \frac{cT_e}{|e|B} \frac{d\ln f_0}{dx}, \quad \frac{df}{dt} = \frac{\partial f}{\partial t} - \left(\bar{\nabla}\phi \times \hat{z}\right) \cdot \bar{\nabla}f, \quad \phi = \frac{|e|\tilde{\phi}}{T_e}, \quad p = \frac{\tilde{p}}{p_0}$$

- DITG is used in this talk to denote ion gyroradius modes driven by both curvature and trapped electron effects
 - Includes both $k\rho_i < 1$ and $k\rho_i \sim 1$ modes

Schematic View of Scales of Interest

• Simple visualization of scale separation

Streamers in ETG Turbulence

- Recent argument: ETG turbulence can nonlinearly from large, radially extended convective cells called "streamers" which may drive relevant experimental transport
 - Understanding their dynamics and conditions for formation still very much an open question
 - Formation of streamers or other large convective cells necessary for ETG to drive experimentally relevant transport levels

FIG. 1: Poloidal cross sections of Wendelstein 7-AS. The representative flux tube shown in red is used for the nonlinear simulation. The turbulence exhibits streamers.

(from Jenko and Kendl, NJP 2002)

FIG. 4. Characteristic $\overline{\partial}$ contours in the outboard *x*-*x* plane. This snapshot was taken at t = 180 of the run shown in Fig. 2. Positive and negative fluctuations are drawn, respectively, with solid and dashed lines.

(from Jenko et. al PoP 2000)

2D Shearing of ETG by DITG

- Most obvious effect of DITG turbulence on ETG will be the random shearing of ETG turbulence by the DITG flow
 - DITG modes will shear ETG **both radially and poloidally**
 - Shearing will be due to entire DITG spectrum, not just ρ_i scale zonal flows
- Separation of ETG, DITG time and length scales suggests that using ETG adiabatic invariants to be appropriate approach
 - Based on experience with this approach, expect shearing effects to manifest as diffusion of ETG intensity in k-space
- **Key question**: will *k*-space diffusion rate overwhelm linear growth rate?
 - If so, energy appearing at low *k* due to linear growth rapidly diffuses to high *k* where it damps → ETG suppressed!
 - If not, then expect that effects of DITG on ETG are weak

2D Shearing of ETG by DITG (cont.)

• Describe ETG by wave-kinetic equation for appropriate adiabatic invariant (e.g. enstrophy / roton number) $N(\bar{x}, \bar{k})$

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial \bar{k}} \left(\omega_k + \bar{k} \cdot \bar{V}_0 \right) \cdot \frac{\partial N}{\partial \bar{x}} - \frac{\partial}{\partial \bar{x}} \left(\bar{k} \cdot \bar{V}_0 \right) \cdot \frac{\partial N}{\partial \bar{k}} \cong 2\gamma_k N - \Delta \omega N^2$$

- Here γ_k is the linear growth rate, $\Delta \omega$ represents nonlinear self-damping of the ETG turbulence
- Invariant N proportional to ETG intensity $|\phi_{ETG}|^2$
- Shear flow $\vec{V}_0 = -\vec{\nabla}\phi \times \hat{z}$ due to a given DITG spectrum $|\phi_q|^2$
 - Consider both $q\rho_s < 1$ curvature-driven ITG, $q\rho_s \sim 1$ (i.e. CTEM) modes
 - Again, stress that this spectrum contains all DITG modes, not just zonal flows, and produces a two-dimensional strain field

2D Shearing of ETG by DITG (cont.)

• Using quasi-linear theory, can derive evolution equation

$$\frac{\partial \langle N \rangle}{\partial t} \cong \frac{\partial}{\partial k_{\alpha}} \underbrace{\frac{\partial \langle N \rangle}{\partial k_{\beta}}}_{\alpha \beta} + 2\gamma_{k} \langle N \rangle - \Delta \omega \langle N \rangle^{2}$$

$$\frac{D_{\alpha\beta}}{\underline{m}} = \rho_e^2 v_{te}^2 \sum_q q_\alpha q_\beta \left| \left(\vec{k} \times \vec{q} \right) \cdot \hat{z} \right|^2 R(\Omega_q) \left| \phi_q \right|^2$$
$$R(\Omega_q) = \frac{1}{2\gamma_k - i(\Omega_q - \vec{q} \cdot \vec{v}_g)}$$

2D Shearing of ETG by DITG (cont.)

- Can identify two timescales $\gamma_{lin} = 2\gamma_k$, $\gamma_D = D_{\alpha\beta} / k_{\alpha} k_{\beta}$
 - Ratio γ_D / γ_{lin} determines whether shearing of ETG by DITG is an important effect.
- To estimate γ_D , need to have an estimate of DITG spectrum- use a **ion temperature** mixing-length estimate (as an upper bound)

$$T_{q} = \frac{\tilde{T}_{i}}{T_{i0}} = \frac{1}{qL_{Ti}}$$

$$T_{q} = \Sigma_{Ti}\phi_{q} \rightarrow \left|\phi_{q}\right|^{2} = \frac{1}{\left|\Sigma_{Ti}\right|^{2}}\frac{1}{\left(qL_{Ti}\right)^{2}}$$

$$\Sigma_{Ti} \approx \frac{q_{\theta}V_{Ti}^{*}}{\omega_{q} + i\gamma_{q}} \rightarrow \left|\Sigma_{Ti}\right|^{2} \approx \frac{\eta_{i}}{\varepsilon} = \frac{L_{B}}{L_{Ti}} \left[\rightarrow \left|\phi_{q}\right|^{2} = \frac{1}{q^{2}L_{Ti}L_{B}}\right]$$

2D Shearing of ETG by DITG (cont)

• Can now estimate γ_D / γ_{lin} as

$$\frac{\gamma_D}{\gamma_{lin}} = \frac{1}{\gamma_{lin}} \frac{D_{\alpha\beta}}{k_{\alpha}k_{\beta}} \approx \frac{1}{\gamma_{lin}} \frac{\rho_e^2 v_{Te}^2}{\gamma_{lin}} \sum_q q^4 \left|\phi_q\right|^2$$

$$\rightarrow \frac{\gamma_D}{\gamma_{lin}} \approx \frac{m}{M} \left(\frac{\overline{q} \rho_s}{k_{\theta} \rho_e} \right)^2 \frac{\tau \eta_i}{\eta_e - \eta_e^c}$$

→ For "generic" ETG and DITG turbulence, shearing of ETG by DITG will be small because of scale separation, but...

Impact: Shearing of Streamers by DITG

- Particularly important case: large-scale ETG streamer with $k_{\theta} \rho_e \approx 1/10$
 - Thought to be most relevant for transport

r

- (from Jenko et. al PoP 2000)
- Then for short-wavelength ($\overline{q}\rho_s \approx 1$) DITG modes

$$\frac{\gamma_D}{\gamma_{lin}} \approx 100 \frac{m}{M} \frac{\tau \eta_i}{\eta_e - \eta_e^c}$$

- → Shearing by short-wave DITG may be important effect for streamers!
- → If streamers are suppressed, is ETG relevant?

Impact: Shearing of Streamers by DITG

• Increased spatial scale makes streamers much more susceptible to shearing by ρ_s scale DITG turbulence

 ρ_e - scale eddies too small to be sheared effectively, swept along by DITG flow field

Extended radial length of streamer makes DITG shearing potentially important effect

• **Caveat for Simulations**: reduced mass ratio may distort this effect

Effects of Modulating η_e

• **Observation**: ρ_s scale fluctuations of T_e induced by larger DITG modes will appear as modulations of η_e to ETG modes

 \rightarrow what is the effect?

Effects of Modulating η_e (cont.)

• Assume $\eta_e = \eta_0 + \delta \eta_e$, with $\delta \eta_e / \eta_0 << 1$. Returning to wave-kinetic equation, mean-field theory predicts modulations will create a **nonlinear growth rate** γ_{NL}

$$\begin{aligned} \frac{\partial \langle N \rangle}{\partial t} &\cong \frac{\partial}{\partial k_{\alpha}} D_{\alpha\beta} \frac{\partial \langle N \rangle}{\partial k_{\beta}} + 2(\gamma_{k} + \gamma_{NL}) \langle N \rangle - \Delta \omega \langle N \rangle^{2} \\ &\gamma_{NL} = 2 \left(\frac{\partial \gamma_{k}}{\partial \eta_{e}} \Big|_{\eta_{e} = \eta_{0}} \right)^{2} \sum_{q} R(\Omega_{q}) \left| \delta \eta_{q} \right|^{2} \end{aligned}$$

Effects of Modulating η_e (cont.)

• Since
$$\gamma_k \alpha (\eta_e - \eta_e^c)^{1/2}$$
, one can write

$$\frac{\partial \gamma_k}{\partial \eta_e}\Big|_{\eta_e = \eta_0} = \frac{\gamma_k}{2(\eta_0 - \eta_e^c)} \rightarrow \gamma_{NL} \approx \frac{1}{4} \frac{\gamma_k}{(\eta_0 - \eta_e^c)^2} \sum_q \left|\delta\eta_q\right|^2$$
$$\implies \frac{\gamma_{NL}}{\gamma_k} = \frac{1}{4} \frac{\sum_q \left|\delta\eta_q\right|^2}{(\eta_0 - \eta_e^c)^2} = \frac{1}{4} \left(\frac{\left|\delta\eta_e\right|}{\eta_0 - \eta_e^c}\right)^2$$

 $\rightarrow \gamma_{NL}$ will be important near ETG marginality, namely when the ETG fluctuation amplitude $|\delta\eta_e| \sim \eta_0 - \eta_e^c$ (i.e. η_e fluctuation amplitude is comparable to the deviation from marginality).

Mean-field Estimate of $\delta \eta_e$

• Estimate an RMS $\overline{\delta \eta_e}$ using mixing length DITG levels

$$\overline{\delta\eta_e} = \left\langle \left| \delta\eta_e \right|^2 \right\rangle^{1/2} = L_n \left\langle \left| \frac{\nabla_r \tilde{T}_e}{T_{e0}} \right|^2 \right\rangle^{1/2} = L_n \left(\sum_q \left| q_r \frac{\tilde{T}_e}{T_{e0}} \right|^2 \right)^{1/2} \right\rangle^{1/2}$$
$$\rightarrow \overline{\delta\eta_e} = \left(\sum_q \left| \frac{\Sigma_{Te}}{\Sigma_{Ti}} \frac{q_r}{q} \right|^2 \right)^{1/2} \frac{L_n}{L_{Ti}} \approx \frac{\eta_e}{2}$$

• **Upshot**: mixing-length level DITG can give $\overline{\delta \eta_e} \approx \eta_e / 2$

→ DITG – induced fluctuations can significantly impact effective ETG growth rate

---- **Caveat**: effects of profile modification should not be neglected when considering *linear* ETG stability bounds

Implications of η_{e} Modulation

- Modulation effect alters ETG growth rate, can compete against shearing of ETG by DITG
 - Note that the enhancement factor does not depend upon mass ratio
- Since effect on ETG depends upon η_e fluctuation at specific point, are interested in not just RMS level, but also PDF of η_{ρ} fluctuations
 - Particularly interested in "tails" of PDF
 - Should be straightforward to study numerically
- **Observation**: if η_e is near critical value, fluctuations may lead to stabilization of ETG turbulence

→ would lead to "submarginal" ETG turbulence, "bursty" transport, on DITG space/time scales 18

Back-Reaction of ETG on DITG

- To gain insight into back-reaction of ETG on DITG, use a simple renormalization approach
 - Effect of slab ETG zonal flows on DITG turbulence has been investigated by Kishimoto and Li
- Model ETG, DITG as two interacting fields with different characteristic scales, each essentially described by a Hasegawa-Mima type equation

– Ignore zonal flows in initial analysis

• **Goal**: break up effects of ETG on DITG into coherent and "noise" terms, compare against DITG self-interaction effects

Back-Reaction of ETG on DITG (cont.)

• Use < superscript for DITG, and > superscript for ETG

- Each instability has real frequency and growth rate

$$\frac{\partial \phi_{k}^{<}}{\partial t} + \left(i\omega_{k}^{<} - \gamma_{k}^{<}\right)\phi_{k}^{<} = \sum_{k'}\Lambda_{k,k'}^{<}\left(\phi_{k'}^{<}\phi_{k-k'}^{<} + \phi_{k'}^{>}\phi_{k-k'}^{>}\right)$$

$$Reynolds stress on DITG from ETG$$

$$\frac{\partial \phi_{k}^{>}}{\partial t} + \left(i\omega_{k}^{>} - \gamma_{k}^{>}\right)\phi_{k}^{>} = \sum_{k'}\Lambda_{k,k'}^{>}\left(\phi_{k'}^{>}\phi_{k-k'}^{>} + \phi_{k'}^{<}\phi_{k-k'}^{>}\right)$$

$$\Lambda_{k,k'}^{>} = \rho_{e}^{3}v_{Te}\frac{\hat{z}\cdot\left(\vec{k}\times\vec{k'}\right)}{1+k^{2}\rho_{e}^{2}}\left(\left|\vec{k'}\right|^{2} - \left|\vec{k}-\vec{k'}\right|^{2}\right)$$

$$Shearing of ETG by DITG$$

$$Shearing of ETG by DITG$$

Back-Reaction of ETG on DITG (cont.)

- Write renormalized evolution equation for DITG intensity
 - Define $I_k^{<} = \left\langle \left| \phi_k^{<} \right|^2 \right\rangle$
 - Write interactions as coherent terms, incoherent / noise terms

$$\frac{\partial I_k^{<}}{\partial t} = 2\gamma_k^{<} I_k^{<} - \nu_k^{<} I_k^{<} + \nu_k^{>} I_k^{<} + S_k^{<} + S_k^{>}$$

• For mixing length ETG and DITG levels, can show

$$\frac{\boldsymbol{v}_{k}^{>}}{\boldsymbol{v}_{k}^{<}} \approx \sqrt{\frac{m}{M}} \left(\frac{\eta_{e}}{\tau \eta_{i}}\right) \qquad \frac{S_{k}^{>}}{S_{k}^{<}} \approx \sqrt{\frac{m}{M}} \left(\frac{\eta_{e}}{\tau \eta_{i}}\right)^{2}$$

- **Result**: self-consistent calculation suggests back-reaction of ETG on DITG is weak (relative to self-interactions)
 - Probably even less important when zonal flows are included

Extended Fluctuation Ecology Model

• Combine results into a three-field "ecology"

$$\frac{\partial E^{>}}{\partial t} = \gamma^{>}E^{>} - \beta^{>}(E^{>})^{2} - \rho E^{<}E^{>} + \gamma^{NL}E^{<}E^{>}$$
$$\frac{\partial E^{<}}{\partial t} = \gamma^{<}E^{<} - \beta^{<}(E^{<})^{2} + \rho E^{<}E^{>} - \alpha UE^{<}$$
$$\frac{\partial U}{\partial t} = \alpha UE^{<} - \nu U$$

- Definitions: $E^>$, $E^<$, U are ETG, DITG, ZF intensities
 - γ represents linear growth, β represents nonlinear self-damping
 - *v* represents collisional damping of zonal flow
 - γ^{NL} models η_e modulation, $\rho E^{<}E^{>}$ terms are coherent ETG DITG interactions, and αUE terms are DITG ZF interactions
 - ZF is "predator," DITG is "prey," ETG is a DITG "parasite"

Extended Ecology Model (cont.)

• Nontrivial fixed point of the system is at

$$E^{<} = \frac{\nu}{\alpha}$$
 $E^{>} = \frac{\gamma^{>}}{\beta^{>}} + \frac{\left(\gamma^{NL} - \rho\right)}{\beta^{>}}\frac{\nu}{\alpha}$

• DITG saturates via zonal flow shearing (no change from previous work)

- result is independent of ETG presence / saturation level

- ETG saturation level is set by self-interactions, growth rate modulations, and DITG shearing
 - Growth rate modulation, DITG shearing can compete against each other
- Observation: possible for ETG, DITG to nonlinearly excite each other (via profile modulation and "negative viscosity" effects)

Main Conclusions

- Two-dimensional random shearing of ETG streamers by short wavelength DITG may be significant effect
- Modulations of η_e due to DITG-induced fluctuations of T_e can lead to a strong enhancement of ETG growth rate
 - Competes against (and may **dominate**) random shearing effect
 - Simulations of ETG w/o short- λ DITG may be of limited relevance
- Cross-field effects have different mass-ratio scalings
 need to use care in simulations with reduced mass-ratio
- Renormalization, ecology model suggest ETG back-reaction on DITG is weak

Some Future Directions

- Computational challenge: can a **supergrid model** for ETG turbulence be developed? How to incorporate slowly varying, large-scale shear flow in ETG theory and simulations
- Interactions between shortwave CTEM and ETG
 - Especially for ETG streamers, transport barrier equilibria
 - Note: short- λ CTEM (relevant shear field source) likely to survive in ITB
- What more be said about DITG shearing of streamers?
 - How strong is DITG shearing relative to K-H breakup rate?
- More detailed analysis of η_e modulation phenomena
 - Extend to possibility of $\eta_e + \delta \eta_e < \eta_e^c$ (submarginal turbulence)
 - Probablisitic studies: intermittency and nonlocality
- Use ideas from mathematical ecology: enviornmental variability, resource competition, niche overlap, ...