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Broadened temperature profile remains nearly unchanged while density peaks

Electron and impurity densities rise inside the heating radius until radiative 
collapse, unless controlled (here Zeff < 1.8)

S. J. Wukitch et al., Phys. Plasmas (2001)
C. L. Fiore et al., Phys. Plasmas (2004)

Internal Transport Barrier Produced by 
Moving ICRH Resonance Off-axis

Recent result: ITB threshold very sensitive to BT, reproducible, no hysteresis

Modest on-axis ICRF heating (< 0.6 MW)  arrests density rise
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Density slowly peaks while temperature profile remains ~fixed.

C-Mod ITBs Provide Test Bed for Particle Transport Studies

Reasons for ITB formation?          What is mechanism for control?  

Very high core densities ~ 6 x 1020  m-3 

No net momentum input

Monotonic q-profiles, small Shafranov shift (no precession drift reversal)

Impurity accumulation controlled with on-axis ICRH (Zeff<1.8)

Varying on-axis ICRH power varies core density rate of rise.

TEM is dominant mode; particle transport remains diagonal

∂ne

∂t
+ ∇ · (ΓWare + Γturb) = 0 (no particle sources or sinks)

Absence of central fueling 

Similar density profile control with external ICRH or ECH:

DIII-D [E. J. Doyle et al., BAPS (2002)]
JT60-U [S. Ishida et al., Phys. Plasmas (2004)]

ASDEX-U [Stober et al., Nucl. Fusion (2001)]

JET [Suttrop et al., Phys. Plasmas (2002)] 

reverse shear ITBs spontaneous peaking H-Modes (find Deff ~ χeff/4)

Ti = Te



Neoclassical Pinch together with Reduced Turbulent 
Transport Sufficient for Barrier Formation

Including Ware pinch keeps 
Deff > 0, allowing margin for 
turbulent diffusion

TRANSPORT ANALYSIS

Ware-Corrected 
Particle Diffusivity

∂ne
∂t

+ ∇ · (ΓWare − Deff∇ne) = 0

c.f.  Bonoli, APS (2001)

Deff =

Γneo〈|∇ρ|〉+
1
V′

∫
dρV′ ∂ne

∂t

〈|∇ρ|2〉
dne

dρ

Ware pinch is sufficient, but is there also a turbulent pinch?
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On-axis ICRH increases 
temperature starting 1.25 sec 

In late phase of discharge,
toroidal rotation is small,
ExB shear unimportant

ITB formation ceases at each radius with TEM onset 

Density gradient scale length 
comes to steady state with
TEM onset (~ 1.0 sec)

Deff ceases to drop when
TEM goes unstable (~ 1.0 sec)
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Gyrokinetic Simulations Using GS21,2 Code

Growth Rate 
Spectrum in ITB

(one radius) 

� Linear stability analysis, data preparation, results plotting 
benchmarked against FULL and GKS codes, for TEM in JT60-U and DIII-D ITBs  

�

We have developed tools3 to interface to experiments, automate runs, plot results

� GS2 runs prepared & run automatically for each radius and time of interest,
reassembled into profiles

[3]  D. R. Ernst et al., Phys. Plasmas (2000) 615 

[1]  W. M. Dorland et al., Phys. Rev. Lett. 85 (2000) 5579.
[2]  M. Kotschenreuther et al., Comp. Phys. Comm. 88 (1995) 128.
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Nonlinear, gyrokinetic Vlasov, initial-value, flux-tube representation 

General magnetic geometry, multiple species, electromagnetic, Lorentz collisions

Linearly benchmarked, electrostatic nonlinear benchmarks completed

�

This talk:
3 species
16 energies
10 circ. pitch angles
32 trapped pitch angles
periodic B.C.
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Refs for most basic theory:  
B. B. Kadomstev and O. P. Pogutse, Sov. Phys.-JETP 24, 1172 (1967).
B. Coppi and G. Rewoldt, PRL 33 (1974) 1329.
J.C. Adam, W. M. Tang, P.H. Rutherford, Phys. Fluids 19 (1976) 561.
C. S. Lui, M.N. Rosenbluth, W.M. Tang, Phys. Fluids 19 (1976) 1040.
B. Coppi and F. Pegoraro, Nuc. Fus. 17 (1977) 969.
W. M. Tang, G. Rewoldt, Liu Chen, Phys. Fluids 29 (1986) 3715.
B. Coppi, S. Migliuolo, Y.-K. Pu. Phys. Fluids B 2 (1990) 2322.
D. W. Ross, J. C. Adam, W. M. Tang, Phys. Fluids 20, 613 (1977).
C. Z. Cheng and L. Chen, Nucl. Fusion 21, 403 (1981).

GS2 in Qualitative Agreement with Existing Linear Theory for TEM
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Gradients in ITB Initially Follow ITG Stability Boundary, 
Allowing Ware Pinch to Peak Density

Several hundred linear
GS2 runs trace out
stability boundaries
(holding Zeff = const.)

Initially, ITB marginally
stable to toroidal ITG 
modes (L   H 0.75-0.80 s)

As Ln shortens (< 1 sec),
"Trapped-Electron-ITG" 
modes weakly grow

When pure TEM 
stability boundary is
crossed, trajectory 
stagnates near 
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Artificial scan of density gradient scale 
length in ITB,  freezing  all other parameters 
just before onset of central  ICRH.

Results show small anomalous
pinch, 80% due to circulating particles, 
for ηe>2  [K. Hallatschek, APS (2002)]

Nonlinear simulations show early pinch in ITB is negligible

Pinch is essentially non-adiabatic,
low energy electrons, subject to reversed
gradient for ηe > 2:

Pinch significant
in collisionless cases,
but collisions should
kill it here.
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Flux Near Marginal Stability
Characterized by Explosive Zonal Flow Bursts

Zonal flows initially driven by
Reynolds stress until K-H parasitic 
instabilities develop with explosive 
growth rates (Rogers secondaries)
[Rogers, Dorland, Hammett, PRL (2000)].

γZF ∝ |Φ|TEM

|Φ|ZF ∝ exp[eγT EMt]

Following explosive 
growth of zonal flows, 
primary modes are stabilized
and then re-grow
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NL Shift

New Nonlinear Upshift of TEM Critical Density Gradient

"High" resolution simulations
at 1.20 sec, ρ=0.4 in ITB

11 poloidal modes
85 radial modes

Analagous to Dimits shift
of critical ion temperature 
gradient for toroidal ITG turbulence
[A. M. Dimits et al., PoP (2000)].

Appears to result from being
in a parameter regime where
zonal flows are stable and
undamped by collisions
[Rogers, Dorland, Hammett, PRL (2000)].

Shift persists with 
strong ion-ion collisions 
(as shown with ν*e ~ 0.8)



Nonlinear Gyrokinetic Simulations Using GS2 Show Increase 
in Particle Diffusivity During Central ICRH

2640 processors / 24 hours

Time = 1.20 sec 
(before on-axis ICRH)

Lower resolution: 
5 poloidal, 39 radial modes
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Poloidal extension requires very 
high radial resolution
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Closer to marginal stability at 1.20 sec:
bursty transport

Long run shows no drift in average 

Converged 11 mode run shows diffusivity
doubles with central heating on.

kyρi spectrum, and weak shear causes 

extension along field line

TEM simulations require extended



Gyrokinetic Turbulence Simulations  
Reproduce Inferred Particle/Heat Transport in C-Mod ITB

Nonlinear GS2 simulations at 1.20 sec, 
preceding on-axis ICRH

New nonlinear upshift in TEM 
critical density gradient due 
to zonal flows
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Gyro-Bohm Scaling Dominates Temperature Dependence 
of TEM Turbulent Transport in this Parameter Range

Central heating increases TEM driven flux through temperature.

GS2 is flux-tube (radially local)              gyroBohm scaling.   

 ρ* =1/188 in C-Mod: local should be ok.   [Candy, Waltz, Dorland, Phys. Plasmas (2004)] 
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Conclusions

Ware pinch sufficient to account for C-Mod density peaking, and 
anomalous pinch is negligible

As density peaks, TEM driven unstable

When TEM flux balances Ware pinch at each radius, stable equilibrium

GS2 simulations of particle and energy flux in ITB agree with experiment

On-axis heating increases temperature, increasing TEM particle flux
consistent with gyrobohm scaling

At same time, Ware pinch decreases with temperature 

 

Along the way, uncovered new nonlinear upshift of TEM
critical density gradient 
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For details, see D. R. Ernst et al., Phys. Plasmas, May (2004) Special Issue.


