Two-fluid magnetic reconnection with arbitrary guide-field

Richard Fitzpatrick IFS, UT Austin

The following new set of reduced equations governing 2-D, two-fluid, magnetic reconnection with arbitrary guide-field is derived:

$$\begin{split} \frac{\partial \psi_e}{\partial t} &= [\phi, \psi] + d_\beta \left[\psi, Z \right] + \eta \, \nabla^2 \psi, \\ \frac{\partial Z_e}{\partial t} &= [\phi, Z] + d_\beta \left[\nabla^2 \psi, \psi \right] + c_\beta \left[V_z, \psi \right] + c_\beta^2 \eta \, \nabla^2 Z, \\ \frac{\partial U}{\partial t} &= [\phi, U] + \left[\nabla^2 \psi, \psi \right] + \mu \, \nabla^2 U, \\ \frac{\partial V_z}{\partial t} &= [\phi, V_z] + c_\beta \left[Z, \psi \right] + \mu \, \nabla^2 V_z, \end{split}$$

where ψ is the magnetic flux-function, ϕ the ion stream-function, Z the normalized perturbed magnetic field in the z-direction, $U = \nabla^2 \phi$, $\psi_e = \psi - d_e^2 \nabla^2 \psi$, and $Z_e = Z - c_\beta^2 d_e^2 \nabla^2 Z$. Also, $[A, B] \equiv \nabla A \wedge \nabla B \cdot \hat{\mathbf{z}}$. Here, $c_\beta = \sqrt{\beta/(1+\beta)}$, $d_\beta = c_\beta d_i$, where β is the plasma beta calculated with the guide-field, d_i the collisionless ion skin-depth, and d_e the collisionless electron skin-depth. It is assumed that $\partial/\partial z \equiv 0$. The reduction process involves the removal of the compressible Alfvén wave, which plays no role in magnetic reconnection.

The above equations, which are easy to solve numerically, represent a significant advance in magnetic reconnection theory, since all existing sets of reduced equations used to study reconnection are only valid in either the large or the small guide-field limits (*i.e.*, either $\beta \gg 1$ or $\beta \ll 1$). The new equations are used to investigate the scaling of the rate of forced magnetic reconnection in the so-called Taylor problem, in which a tearing stable plasma is subject to a suddenly applied resonant magnetic perturbation. In the non-linear regime with arbitrary guide-field (and $d_e = 0$), the peak reconnection rate is independent of the resistivity, and scales like $d\Psi/dt \sim$ $[\beta/(1+\beta)]^{3/4} d_i^{3/2} \Xi_0^2$, where Ξ_0 the amplitude of the external perturbation. This result cannot be accounted for in terms of the "universal" reconnection rate recently proposed by the Maryland group.