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Abstract

The straightforward Lattice Boltzmann scheme to solve nonlinear macroscopic equations like
MHD is a very powerful, highly parallelizeable simple algorithm that has attained 3.6 Tflops/s on
the Earth Simulator1.  However, more refined schemes must be developed to avoid nonlinear
numerical instabilities – especially as one pushes to regimes of smaller transport coefficients.
The instabilities typically manifest themselves by the distribution function going negative in
some regions of phase space. Recently2, an elegant formulation of LBM has been introduced
which ensures nonlinear numerical stability and the realizability constraint of non-negative
distribution functions at every time step through the introduction of a discrete Liapunov
functional.  There are 4 basic steps : (1)  determination of a discrete convex H-function subject to
the appropriate moment constraints, (2) the determination of a bare collision operator 

€ 

Δ  (not
necessarily BGK); (3) the existence of a functional 

€ 

α f[ ]  so that 

€ 

H f[ ]  =  H f  +  α Δ[ ] ; (4) the
evolution of the discrete kinetic equation is through the dressed collision operator 

€ 

Δ* = βα f[ ]Δ
where 

€ 

β  is a parameter that controls the transport coefficient.
This entropic scheme is unconditionally stable.  A
plot of surfaces of 

€ 

H = const.  has an initial f on the
surface L, with 

€ 

−∇H  having a component towards

€ 

f eq .  Bare collision operator 

€ 

Δ  drives the system
t o  l o w e r  H ,  w i t h  

€ 

α f[ ]  so
that

€ 

H f[ ] = H f +α Δ[ ]  =  H f *[ ] .  Thus 

€ 

α is the
maximal that will still permit a local H-theorem
and realizability.  The parameter

€ 

0 ≤ β ≤ 1 yields
t h e  d r e s s e d  c o l l i s i o n  o p e r a t o r

€ 

f → 1− β( ) f + β f * , with 

€ 

β → 1 yielding
transport coefficients 

€ 

→ 0 .

We shall employ this entropic lattice Boltzmann
approach to the KdV and 1D MHD models.
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