Entropic Lattice Boltzmann Schemes

G. Vahala¹, L. Vahala² ¹College of William & Mary, Williamsburg, VA 23185 ²Old Dominion University, Norfolk, VA 23529

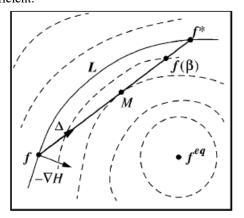
Abstract

The straightforward Lattice Boltzmann scheme to solve nonlinear macroscopic equations like MHD is a very powerful, highly parallelizeable simple algorithm that has attained 3.6 Tflops/s on the *Earth Simulator*¹. However, more refined schemes must be developed to avoid nonlinear numerical instabilities – especially as one pushes to regimes of smaller transport coefficients. The instabilities typically manifest themselves by the distribution function going negative in some regions of phase space. Recently², an elegant formulation of LBM has been introduced which ensures nonlinear numerical stability and the realizability constraint of non-negative distribution functions at every time step through the introduction of a discrete Liapunov functional. There are 4 basic steps : (1) determination of a bare collision operator Δ (not necessarily BGK); (3) the existence of a functional $\alpha[f]$ so that $H[f] = H[f + \alpha \Delta]$; (4) the evolution of the discrete kinetic equation is through the dressed collision operator $\Delta^* = \beta \alpha[f] \Delta$ where β is a parameter that controls the transport coefficient.

This entropic scheme is unconditionally stable. A plot of surfaces of H = const. has an initial f on the surface L, with $-\nabla H$ having a component towards f^{eq} . Bare collision operator Δ drives the system lower H , with $\alpha[f]$ so to that $H[f] = H[f + \alpha \Delta] = H[f^*]$. Thus α is the maximal that will still permit a local H-theorem and realizability. The parameter $0 \le \beta \le 1$ yields the dressed collision operator $f \rightarrow (1 - \beta) f + \beta f^*$, with $\beta \rightarrow 1$ yielding transport coefficients $\rightarrow 0$.

We shall employ this entropic lattice Boltzmann approach to the KdV and 1D MHD models.

¹ J. Carter, G. Vahala, L. Vahala, A. Macnab, M. Soe, Parallel CFD2004 (to be published)



² S. Ansumali and I. V. Karlin, Phys. Rev. E62, 7999 (2000); Phys. Rev. E65, 056312 (2002); J. Stat. Phys. 107, 291 (2002);