Impact of field line label and ballooning parameter on infinite-*n* ballooning stability in compact stellarators*

D. Westerly,¹ A. S. Ware,¹ R. Sanchez,² L. A. Berry,³ G. Y. Fu,⁴ S. P. Hirshman,³ J. F. Lyon,³ D. A. Spong,³ D. J. Strickler³

¹University of Montana-Missoula, Missoula, Montana 59812 ²Universidad Carlos III de Madrid, Madrid, Spain ³Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ⁴Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543

The infinite-*n* ideal ballooning mode stability of a non-axisymmetric equilibrium is a function of the ballooning parameter, $\theta_k = k_r/k_\alpha$ and the field line label, $\alpha =$ $\theta - \iota \zeta$. Here, k_r and k_{α} are the components of the wavenumber perpendicular to the magnetic field and ι is the rotational transform. In this work, the impact of field line label and ballooning parameter on the infinite-*n* ballooning stability of compact, quasi-poloidal symmetric stellarators is investigated. Previously, the ballooning stability of quasi-poloidal stellarators has been examined for fixedboundary, very-high β ($\beta > 10\%$), tokamak-stellarator hybrid configurations [1] and free-boundary, moderate β ($\beta > 4\%$) plasmas in the Quasi-Poloidal Stellarator (QPS) [2]. These previous calculations were performed with θ_k , $\alpha = 0$. Here, these results are extended to include other possible values of θ_k and α . The first ballooning instability β -limits for these devices are well described by the θ_k , $\alpha =$ 0 results. Changing either θ_k or α increases the β required for first instability. The β values required to enter second ballooning stability are higher when θ_k , $\alpha \neq$ 0. The plasma is still first-unstable to modes with θ_k , $\alpha \neq 0$ even after modes with θ_k , $\alpha = 0$ (and regions nearby in parameter space) become second stable. These results are compared with calculations of the stability of finite-n ballooning modes in both the hybrid configuration and the QPS configuration.

- *This work is supported by the U.S. DOE under grant No. DE-FG02-03ER54699 at the University of Montana.
- A. S. Ware, S. P. Hirshman, D. A. Spong, et al., Phys. Rev. Lett. 89, 125003 (2002).
- [2] A. S. Ware, D. Westerly, E. Barcikowski, et al., "Second ballooning stability in high- β , compact stellarators", to appear in Phys. Plasmas (2004).