

Astrophysical Dynamo Action

Fausto Cattaneo

Center for Magnetic Self Organization and Department of Mathematics

University of Chicago

cattaneo@flash.uchicago.edu

A hydromagnetic dynamo is a sustained mechanism to convert kinetic energy into magnetic energy within the bulk of an electrically conducting fluid

- Commonly invoked to explain the origin of cosmic magnetic fields
- Universe is a strongly magnetized place (now)
- WMAP. Universe was not strongly magnetized at recombination
- Something must have generated magnetic fields between then and now

Assume magnetic fields are generated by dynamos

Some examples

Liquid metal experiments

- Typical size 0.5 2.0 m
- Turbulence driven by propellers

Geodynamo

- Size: 6,400 Km
- Turbulence driven by compositional convection in the liquid core
- Evidence for magnetic reversals

Some examples

Sun (late-type stars)

- Size 600,000 Km
- Turbulence driven by thermal convection
- Evidence for activity cycles

Accretion disks

- Typical size varies
- Turbulence driven by MRI

Some examples

Galaxy

- Typical size: 10²⁰ m
- Turbulence driven by supernovae explosions
- Field mostly in the galactic plane

Radio galaxies --IGM

- Typical size: 30 Kpc wide, 300 Kpc long
- Turbulence in central object driven by gravitational/rotational energy of SMBH
- Evidence for expulsion of magnetic helices in lobes

- 1908- Hale: Sunspots have strong magnetic fields
- 1919- Larmor: Dynamo action is introduced
- 1934- Cowling: Impossibility of axisymmetric dynamo action
 - Need for three-dimensional motions
- 1955- Parker: Cyclonic events and the $\Gamma\text{-effect}$
- 1964- Braginskii: Nearly-axisymmetric dynamos
- 1966- Steebeck, Krause & Rädler: Mean field eletrodynamics
 - α - ω and α^2 dynamo models
- 1972- Vainshtein & Zel'dovich: Fast and slow dynamos
- 1979- Moffatt: Magnetic field generation in electrically conducting fluids
- 1995- Gilbert & Childress: Stretch, Twist, Fold
- Now- Computer models, dynamical systems, spectral theory, cycle expansions, etc...

Evolution described by the *induction equation* and *Navier-Stokes equation*

$$\partial_t \mathbf{B} + \mathbf{U} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{U} + R_m^{-1} \nabla^2 \mathbf{B}$$

 $\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U} = -\nabla p + \mathbf{J} \times \mathbf{B} + R^{-1} \nabla^2 \mathbf{U} + \mathbf{F}$

 $\nabla \cdot \mathbf{B} = \nabla \cdot \mathbf{U} = 0, \quad \mathbf{J} = \nabla \times \mathbf{B}$

$$R = U | / , \quad R_m = U | / \eta$$

In most astrophysical situations it is assumed that initially

B << **U**

cf dynamo action in laboratory plasma devices

- <u>Kinematic</u>: If initial field is weak, Lorentz force is negligible. Velocity is independent of B. Solve induction for prescribed velocity (eigenvalue problem for growth rate).
- **Fast/Slow:** Kinematic growth rowth rate as $R_m \rightarrow \infty$.
 - Fast: Remains positive
 - *Slow:* Negative or approaching zero
- Large/small: Characteristic scale of generated field
 - Small-scale: Comparable or smaller that the velocity correlation length
 - *Large-scale*: Larger than velocity correlation length
 - Require lack or reflectional symmetry (helicity/rotation)
 - Existence of inverse cascades
 - Mean field effects
 - Mean induction α-effect
 - Turbulent diffusion -effect

Magnetic field grows if on average rate of *field generation* exceeds rate of *field destruction*

- Magnetic field generation due to line stretching by fluid motions
- Magnetic field destruction due to enhanced diffusion

Dynamo *growth rate* depends on competition between these two effects. In a *chaotic flow* both effects proceed at an *exponential* rate.

 \mathbb{CMSO}

Chaotic flows

Fluid trajectory given by

$$\dot{\mathbf{X}}(t) = \mathbf{U}(\mathbf{X}(t), t), \quad \mathbf{X}(0) = \mathbf{a}$$

Follow deformation of cube of fluid of initial size δx over a short time $\delta t.$ New size

$$\delta x(e^{\lambda_1\delta t}, e^{\lambda_2\delta t}, e^{\lambda_3\delta t})$$

If deformation proceeds at exponential rate *on average*, flow is <u>*chaotic*</u>. $\lambda_1, \lambda_2, \lambda_3$ are the <u>Lyapunov exponents</u>. $(\lambda_1 + \lambda_2 + \lambda_3 = 0)$

 λ_1 Rate of stretching λ_3 Rate of squeezing

Example of 2-D chaotic flow

Simple example of smooth solenoidal flow with chaotic streamlines.

$$\mathbf{u}_{p} = (\Psi_{z}, 0, -\Psi_{x})$$
$$\Psi = \sqrt{3/2} \left(\sin(x + \cos t) + \cos(z + \sin t) \right)$$

Red and yellow correspond to trajectories with positive (finite time) Lyapunov exponents $\lambda_1(\mathbf{X}, t)$

- λ_1 Rate of divergence. Local stretching
- λ_3 Rate of convergence. Local shrinking

Streamlines

Finite time Lyapunov exponents

Line stretching in a chaotic flow

In a chaotic flow the length of *lines* increases exponentially (on average)

$$|(t)| = |_0 \exp(\lambda_T t)$$

 λ_T is the *topological entropy*. It satisfies $\lambda_T \geq \lambda_1$

Do dynamos operate at the rate ?

 $|\kappa_3|$ local rate of growth of *gradients* \Rightarrow dissipation also increases exponentially.

In two dimensions $\kappa_1 = -\kappa_3$. Magnetic field is destroyed as rapidly as it is generated.

 $\mathbf{B} = \nabla \times (A\mathbf{e}_{\mathbf{y}})$ $(\partial_t - R_m^{-1} \nabla^2) \mathbf{A} + \mathbf{u} \cdot \nabla A = 0$

In 2D magnetic flux behaves like a scalar. Thus

$$\partial_t \langle A^2 \rangle = -2R_m^{-1} \langle \nabla A^2 \rangle$$

Two-dimensional dynamo action is *impossible* (Zel'dovich 1957)

 \mathbb{CMSO}

Simple modification leads to dynamo action (Galloway & Proctor 1992)

 $\mathbf{u}_0 = (\boldsymbol{\psi}_z, \boldsymbol{\psi}, -\boldsymbol{\psi}_x)$

Three-dimensional but still yindependent.

 $\mathbf{B}(\mathbf{x},t) = \mathbf{b}(x,z,t) \exp(\mathbf{\sigma} t + iky)$

For
$$R_m >> 1$$
 and $k = 0.57$
 $\Re(\sigma) \approx 0.3$

However still have $?_1 = - ?_3$

Diffusion of magnetic field is determined by two processes:

• Growth in the magnitude of the *gradients* of **B**

• Geometry of the *sign reversals* of the field lines

Effectiveness of diffusion of a <u>vector field</u> depends also on how the field lines are arranged

Effective

Ineffective

Effective diffusion of vector quantities depends on magnitude of gradients and *orientation*. Packing becomes important.

k is the cancellation exponent. Measures the singular nature of sign reversals (Du & Ott 1994)

Enhanced diffusion depends on the (exponential) growth of gradients and on field alignment

$$L_{1} = \exp(\lambda_{1} \delta t)$$
 Local stretching
$$L_{2} = \exp(-\lambda_{2} \delta t)$$
 Local contraction

Conjecture by Du & Ott (1995) for foliated fields as $Rm \rightarrow \infty$

$$\sigma_{R} = \lim_{\delta t \to \infty} \frac{1}{\delta t} \langle L_{1} L_{2}^{k} \rangle$$

- Enhanced diffusion (cancellation exponent) requires global knowledge of geometry of trajectories (very hard).
- What is the generalization of the Ott-Du formula?
 - Give growth rate as a function of velocity statistics.
- Resulting magnetic field is a (multi)-fractal object. Describe in terms of multi-fractal measures *Dq*, say.
 - Give *Dq*'s as functions of velocity statistics.
- What happens after kinematic regime?
 - Magnetic field re-laminarises?
 - How does non-linear saturation occurs?

 \mathbb{CMSO}

<u>Two-scale approach</u>. Separate variables into large and smallscale components. Consider the evolution of the large-scale field

$$\partial_t \langle \mathbf{B} \rangle = \nabla \times \langle \mathbf{u} \times \mathbf{b} \rangle + Rm^{-1} \nabla^2 \langle \mathbf{B} \rangle$$

In kinematic regime linearity of induction equation establishes a linear relationship between mean field and mean emf

$$\langle \mathbf{u} \times \mathbf{b} \rangle_i = \alpha_{ij} \langle B_j \rangle - _{ijk} \partial_j \langle B_k \rangle + \dots$$

Isotropic case

Aámean induction

Báddy diffusion

- In kinematic regime a¥and ߥshould be determined solely by *Rm* and the statistics of u
- aXs a pseudo-scalar (tensor) è requires lack of reflectional symmetry
- Simple solutions of dynamo equation

$$\mathbf{B} = \mathbf{B}_{\mathbf{0}}(\mathbf{x}) \exp(\sigma t), \quad \nabla \times \mathbf{B}_{\mathbf{0}} = k\mathbf{B}_{\mathbf{0}}, \quad \sigma = k(\alpha - k)$$

with

$$k_c = \alpha /$$

In large *Rm* situation aðand ßðshould have turbulent values. i.e. independent of *Rm*

$$\alpha \approx u, \qquad \approx u \mid , \quad k_c \mid = O(1)$$

Dynamo sets in at small, rather than large scales (bit of a problem)

- In systems lacking reflectional symmetry mean induction effect (αeffect) leads to growth of large-scale field
- Observations show that in many astrophysical systems *large-scale* field is in equipartition with velocity
- This could easily be achieved if mean induction effect saturates when

$$\langle \mathbf{B} \rangle \approx u$$

• Suggesting a phenomenological non-linear behaviour of the mean induction term of the type

$$\alpha \approx \frac{u}{1 + \langle \mathbf{B} \rangle^2 / u^2}$$

• However there appear to be problems when *Rm* >>1.

CMSO

In 2D induction equation becomes scalar transport equation

$$\mathbf{B} = \nabla \times (A\mathbf{e}_{\mathbf{y}}), \qquad (\partial_t - R_m^{-1} \nabla^2) A + \mathbf{u} \cdot \nabla A = 0$$

With suitable boundary conditions we have

$$\partial_t \langle A^2 \rangle = -2Rm^{-1} \langle \nabla A^2 \rangle = -2Rm^{-1} \langle B^2 \rangle$$

- In order to maintain "turbulent" behaviour as *Rm* → ∞ gradients of *A* must diverge
- Generation of small scale fluctuations increases magnetic field energy

$$\langle |\mathbf{B}|^2 \rangle = \langle \mathbf{B} \rangle^2 Rm$$

• Reasonable energetic constraint $\langle B^2 \rangle = \mu^2$, gives estimate

$$=\frac{u}{1+RmB^2/u^2}, \qquad B=\langle\!\!\langle \mathbf{B}\rangle\!\!\rangle$$

CMSO

• Assume diffusive behaviour of large scale component of A (D=)

 $\partial_t \langle A \rangle = D \nabla^2 \langle A \rangle$

• With diffusivity given by (Taylor 1921)

$$D = \frac{1}{4} \frac{d}{dt} \left(\xi^2 \right) \approx \frac{1}{4} C_L(0)$$

 $C_{L}(\omega) = \int_{-\infty}^{\infty} (\mathbf{v}(\mathbf{a},t)\mathbf{v}(\mathbf{a},t+s)) \exp i\omega s \, ds$

Turbulence develops a <u>memory</u>

• Equivalent expression for α (Moffatt 1964)

$$\alpha = \frac{1}{6} \frac{d}{dt} \langle ? \nabla_L \times ? \rangle$$

- Kinematically some problems with convergence of integrals as $Rm \rightarrow \infty$
- Non-linearly is there an analogy between 2-D diffusion and 3-D α -effect?
 - Phenomenological argument (Vainshtein & Cattaneo 1991)
 - Closure argument (Kulsrud & Anderson 1992)
 - Quasi-linear closure (Diamond & Gruzinov 1994)

Most nonlinear treatments rely on two statements

- Geometrical (to maintain turbulent rate as $Rm \rightarrow \infty$ something must diverge)
- Dynamical (divergence is energetically impossible)

Assume suitable boundaries

$$\frac{d}{dt} \langle \mathbf{A} \cdot \mathbf{B} \rangle = -2R_m^{-1} \langle \mathbf{B} \cdot \mathbf{J} \rangle \quad (\text{exact})$$

Stationary, uniform mean field

 $\alpha \langle \mathbf{B} \rangle^2 = -R_m^{-1} \langle \mathbf{b} \cdot \mathbf{j} \rangle \quad (\text{exact})$

From EDQNM, say (Pouquet, Frish & Leorat 1975), get dynamical relationship

 $\alpha = - \langle \mathbf{u} \cdot \mathbf{?} - \mathbf{b} \cdot \mathbf{j} \rangle \quad (\text{extremely not-exact})$

Combine to get saturation effects (as before)

$$\alpha = \frac{u}{1 + RmB^2 / u^2}, \quad B = \langle B \rangle$$

- Final result is correct but irrelevant
 - time dependence is neglected
 - large scale gradients are neglected
 - special boundary conditions (no flux of helicity) are assumed
- Derivation is wrong/suspect
 - Assumptions about correlation time need justification
 - intermittency effects are neglected (possibly strong in 3D)
 - last expression only valid for (moderate) *Rm*
- α -effect is not saturated in laboratory plasmas (rfp)
- If everything is correct, how do large-scale equipartition fields get generated?

CMSO

• Dynamo theory does provide possible framework to explain origin of magnetic fields in widely different astrophysical objects.

 At the moment Large <i>Rm</i> lint Field deve Field deve Field deve Dynamos are sneakier than you think. Does inter What is ty regime? 	dynamical? turated
---	-----------------------

- Is the α -effect suppressed in realistic situations? What about the effects?
- Does the turbulence develop a long-term memory in 3-D?
- Etc. etc. etc.

The end

 \mathbb{CMSO}

Some (computer) examples

Non-rotating convectively driven dynamo

Quasigeostrophic driven dynamo

