Global Gyrokinetic Particle-in-cell Simulations with Trapped Electrons*

J. L.V. Lewandowski¹, Y. Nishimura², W.W. Lee¹, Z. Lin², S. Ethier¹ *1. Princeton Plasma Physics Laboratory, Princeton, NJ 08543 2. Department of Physics & Astronomy, University of California at Irvine, Irvine, CA 92697*

The treatment of electron dynamics in global, toroidal, gyrokinetic Particle-in-Cell (PIC) codes represents a major challenge. As it was recently demonstrated, it is physically^{1,2} and computationally³ meaningful to follow dynamically only the nonadiabatic part of the electron response. This approach, however, requires the global solution of a Poisson-like equation for the so-called polarization field¹, $\chi \equiv \partial \Phi / \partial t$, where Φ is the electrostatic potential. The overall viability of the scheme depends crucially on the efficiency of the solution of the Poisson-like equation for χ . To address this issue, a finite-difference based matrix A is generated and the inversion of $A\mathbf{x} = \mathbf{b}$ (where the number of unknowns is typically in the range of $N \in [10^5 - 10^7]$) is carried out using the PETSC⁴ library routines. A complementary approach based on the finite element method can also be used to perform the inversion of A (Y. Nishimura *et al*; this conference). An algebraic multigrid (AMG) solver from the hypre⁵ library is used as a preconditioner for the matrix A. The elliptic solver is compatible with the parallel structure of the GTC code⁶. Preliminary results of ITG turbulence with trapped electrons will be reported.

* Work supported by US Department of Energy.

- ¹ J.L.V. Lewandowski, *Phys. Plasmas* **10**, 3204 (2003).
- ² I. Manuilskiy and W. W. Lee, *Phys. Plasmas* 7, 1381 (2000).
- ³ J.L.V. Lewandowski, *J. of Scientific Comp.* (in press; 2004).
- ⁴ http://wwww-unix.mcs.anl.gov/petsc/petsc-2
- ⁵ http://www.llnl.gov/CAS/groups/casc-sag.html

⁶ Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White, *Science* **281**, 1835 (1998).