Non-curvature Driven Modes in the H-mode Edge Pedestal

B. Rogers

Dartmouth College, Hanover, NH

W. Dorland

University of Maryland, College Park, MD

- What controls the height and width of the H-mode edge pedestal?
- What linear instabilities are potentially important in the pedestal?
- Is the contribution of the $E \times B$ shear always stabilizing?

H-mode Edge E_r profile in DIIID (K Burrell, PoP 1999)

- E_r "well" near steepest plasma gradients with $V_E \sim V_{*e} \sim -V_{*i}$
- Typical pedestal widths $\Delta \sim (10-20)\rho_i$

E_r Profile can be Destabilizing

• The stabilizing effect of $E \times B$ shear is well known, however:

Even if magnetic curvature is neglected, there are at least three linear instabilities at pedestal-relevant parameters that are potentially destabilized by typical profiles of $E \times B$ shear and plasma gradients.

- These modes all require finite curvature in the V_E and/or plasma gradient profiles to be unstable
- Not present in simulations with spatially constant plasma gradients and/or spatially constant $E \times B$ shear (ie local simulations)

Our Analysis

- Gyrokinetic GS2 simulations and analytic calculations of a simple slab model of the H-mode pedestal that includes:
 - Spatially varying $E \times B$ shear and plasma gradients with typical pedestal magnitudes and spatial scales
 - Magnetic shear
 - Electromagnetic effects
 - Kinetic effects (eg Landau damping, FLR)

but excludes

- Magnetic curvature
- Poloidal variation and other toroidal geometry effects
- Parallel flows

GS2 simulations

- Sheared slab geometry with no magnetic curvature
- Radially periodic BC's
- Simple (eg sinusoidal) background profiles of V_E , n', T'_i , T'_e
- Comparable magnitudes of $V_E \sim V_{*e} \sim -V_{*i}$ at typical H-mode levels

Analytic calculations

- Electromagnetic Gyrofluid model (Snyder and Hammett, 1999)
- Periodic and non-periodic (eg, tanh) sheared slab profiles of n, T, etc (Periodic and non-periodic cases yield similar results)
- Electron model is isothermal and includes a simple approximation to electron Landau damping:

$$\nabla_{\parallel} T_e = 0$$
, $\alpha \partial_t \psi - \nabla_{\parallel} (\phi - n) = (\mu d_t + \nu + \lambda |k_{\parallel}|) J$

 \bullet Identical results (for $k_\perp^2\rho_i^2\ll 1)$ obtained from an isothermal Braginskii model

Limitations

- GS2 simulations and analytic calculations are based on the standard "flux-tube" ordering:
 - Order-unity variations of background plasma $gradients\ n',\ T'$ etc are OK
 - But, assumes mode is radially localized to a region over which the deviations in the *absolute* levels of n, T etc are small

For one of the modes of interest - the KH mode - the radial envelope is comparable to the entire pedestal width. Fully non-local simulations are needed to go further.

• Lack of realistic toroidal geometry effects

Summary: Three Main Modes

1. Kelvin-Helmholz Instability

- Driven by shear in $E \times B$ velocity V_E
- $-k_{\perp}\sim 1/\Delta$
- Magnetic shear and V_{*i} are stabilizing

Near marginal stability for narrow H-mode pedestal parameters. Probably stable for wide pedestals.

2. "Tertiary Mode"

- An adiabatic, electrostatic mode arising at high- k_{\parallel} and $k_{\perp} > 1/\Delta$
- Driven mainly by T'_i
- Stable for vanishing or constant $E \times B$ shear
- Insensitive to magnetic shear
- FLR effects stabilizing

Near marginal stability for narrow H-mode pedestals. Possibly unstable for wider pedestals.

Summary: Three Main Modes (II)

3. Linear Driftwave Instability

Aside from $E \times B$ shear, similar to the mode that was discussed in the literature decades ago.

- Driven by plasma gradients and (for typical H-mode parameters) electron Landau damping
- $-k_{\perp} \sim (0.2-5)/\rho_s$ and $k_{\parallel} \sim \sqrt{\beta} k \rho_s/\Delta$
- Requires spatial variations in the $E \times B$ shear or plasma gradients (like those typical of the edge pedestal) to be linearly unstable in the presence of magnetic shear
- Electromagnetic effects important (stabilizing)

Unstable for all parameters we have checked. Strong candidate for driving transport in the H-mode edge of toroidal or linear devices

KH Mode Basics

• In the most unstable case ($\hat{s} = 0$ and no diamagnetic effects), for either tanh or cos profiles:

$$-\gamma_{max} \simeq 0.25 V_{E,max}'$$
 for $k \sim 1/\Delta$

- $-\omega \sim \gamma_{max}$ or less (profile dependent)
- Linear eigenfunction varies radially on pedestal scale

KH Mode and Magnetic Shear

• Can be stabilized by magnetic shear:

$$\vec{B} = B_0 \left(\hat{e}_z + \frac{x}{L_s} \hat{e}_y \right)$$
 , $k_{\parallel} = k_z + k_y x / L_s$

Stable if:

$$L_s \lesssim C_A/V'_{E,max}$$

or assuming $L_s = qR/\hat{s}$ and $V'_{E,max} = 2V_E/\Delta$ (Δ =full pedestal width):

$$\Delta \gtrsim 1.6 \rho_i \left(\frac{qR}{d_i\hat{s}} \frac{V_E}{V_{vio}}\right)^{1/2}$$
 (stable)

Sample H-mode Edge Parameters

• DIIID:

$$R \simeq 168 \ cm$$

$$n \sim 2 \times 10^{13} \ cm^{-3}$$

$$T_e \sim T_i \sim 350 eV$$

$$B \sim 2T$$

$$m_i = 2m_p$$

$$\hat{s} \sim 2 \ , \ q \sim 3.5$$

$$\beta_e \sim 7.1 \times 10^{-4}$$

• Alcator CMOD:

$$R \simeq 68 \ cm$$

$$n \sim 1.5 \times 10^{14} \ cm^{-3}$$

$$T_e \sim T_i \sim 250 eV$$

$$B \sim 5.3T$$

$$m_i = 2m_p$$

$$\hat{s} \sim 2 \ , \ q \sim 3.5$$

$$\beta_e \sim 5.4 \times 10^{-4}$$

KH Mode and Magnetic Shear (II)

• Evaluating shear stability condition for sample parameters and assuming $V_E \sim V_{*i0}$:

$$\Delta/\rho_i \gtrsim 1.6 \left(\frac{qR}{d_i\hat{s}}\frac{V_E}{V_{*i0}}\right)^{1/2} \simeq 12$$
 (DIIID), 10 (CMOD)

Suggests narrow pedestals are close to marginal due to shear alone

KH Mode and Ion Diamagnetic Effects

• But, ion diamagnetic effects are also stabilizing:

A necessary condition for instability is $V_E(V_E + V_{*i}) > 0$ or

$$(1 + V_{*i}/V_E) > 0$$
 (unstable)

In typical (?) pedestals $V_{*i}/V_E \sim -1$ (the marginal case)

KH Mode

• Narrow pedestals are close to marginal stability

Is this a coincidence?

Need a more detailed study, including realistic geometry and ion diamagnetic effects, to determine role.

Tertiary Mode

- Predominantly adiabatic and electrostatic
- Driven mainly by T'_i and localized by $E \times B$ shear
- Insensitive to magnetic shear

Tertiary Mode (II)

• Growth rate and frequency:

$$\gamma \sim \sqrt{\frac{\rho_s}{\Delta}} V_E/\Delta$$
, $\omega \simeq k_y V_E$ (weaker than KH by factor of $\sqrt{\rho_s/\Delta}$)

• Stabilized by FLR effects (?) when $\Delta \sim (5-10)\rho_i$

Probably unstable except for narrow pedestals but difficult to judge based on simple model. Work in progress.

Driftwave Mode

- An electron drift wave that (for typical H-mode β 's) is predominantly destabilized by electron Landau damping with secondary contributions from electron inertia and/or resistivity
- Radially localized by the curvature of either the $V_E \propto \phi'$ or n' profiles:
 - For $k\Delta\gg 1$, eigenfunction is Gaussian with (radial) mode width $\delta_d\sim \sqrt{\Delta/k}<\Delta$
- Typically $\gamma_{max} \sim (0.1 0.2) \omega_{*e,n}$ for $k_{\parallel} \sim \sqrt{\beta} k \rho_s / \Delta$
- Magnetic shear is moderately stabilizing for typical parameters (consistent with analytic results since $k_{\parallel} > k \delta_d/L_s$)

Driftwave Mode (II)

• In analytic calculations, γ is given by a cubic DR:

$$\bar{\gamma}\bar{\gamma}_{i}\left[\alpha\bar{\gamma}_{e}+\left(\mu\bar{\gamma}+\nu+\lambda|k_{\parallel}|\right)k_{y}^{2}\right]=-k_{\parallel}^{2}\left[\bar{\gamma}_{e}+k_{y}^{2}\rho_{s}^{2}(\bar{\gamma}_{i}+\tau\bar{\gamma}_{e})\right]$$

Driftwave Mode (III)

- ullet For typical eta values, electron LD is destabilizing
- Finite β is stabilizing

Summary

• Neglecting magnetic curvature and parallel flows, but including $E \times B$ shear, magnetic shear, and profile variation, we find three linear instabilities that are potentially relevant to H-mode pedestals:

- KH mode

Near marginal stability due to magnetic shear and ion diamagnetic effects, but is potentially unstable for narrower pedestals.

- Tertiary mode

Potentially stabilized by FLR effects in narrower pedestals. Possibly unstable for wide pedestals.

Nonlocal driftwave mode

Unstable for all parameters we have checked. Electron Landau damping and EM effects important. A potentially important driver of transport in either toroidal or linear machines.

- Even if only the driftwave mode is important, an accurate simulation model would need to include:
 - Nonlocal profile effects and $E \times B$ shear
 - EM effects
 - Kinetic effects (electron Landau damping)