1E47

Self-organization in radiative plasmas

D.Kh. Morozov¹ and M. Pekker²

¹Institute of Nuclear Fusion, Moscow, Russia

²Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712

Abstract

Nonlinear self-sustained oscillations of Belousov-Zhabotinsky type were predicted for radiative plasmas theoretically [1]. Inharmonic oscillating solutions for incompressible carbon plasmas were obtained using expansion in series over oscillation amplitudes. It was shown also that purely harmonic oscillations might take a place. In this work the nonlinear oscillations are found in compressible radiative plasmas for exact functions for ionization-recombination rates and radiation intensities. The averaged temperature for compressible plasmas is lower than for incompressible one. Pure harmonic nonlinear oscillations are found. As it shown in Ref. [2], the temperature oscillations produce the nonlinear shift of ionization equilibrium without any decrease of input power. Hence, the self-sustained oscillations may be used in order to increase the ionization level in plasma shooters and to enhance their efficiency.

D.Kh. Morozov 29th EPS Conf. On Plasma Phys. and Contr. Fusion, v. 26B, P-1.002 (2002).
V.I. Gervids and D.Kh. Morozov, Plasma Phys. Rep., v. 25, p.1998 (1999).